IntelliTop ${ }^{\circledR} 2.0$
Control Head

Operating instructions

We reserve the right to make technical changes without notice.
Technische Änderungen vorbehalten.
Sous resérve de modification techniques.
© Südmo Components GmbH, 2010-2020
Operating Instructions 2003/10_EN_00805843 / Original DE

Control Head IntelliTop 2.0

CONTENTS

1. OPERATING INSTRUCTIONS.. 8
2. AUTHORIZED USE ... 9
2.1. Export restrictions ... 9
3. BASIC SAFETY INSTRUCTIONS..
4. GENERAL INFORMATION... 12
4.1. Contact address .. 12

5.2. General description ... 13

5.3.1. Structure of the control head .. 14
5.3.2. Structure of the control head (feedback top) ... 15
5.3.3. Fluid diagrams .. 16
5.3.4. Number of solenoid valves ..
5.3.5. Pneumatic interfaces... 17
5.3.6. Manual control .. 18
5.3.7. Position measuring system ...
5.3.8. Other features .. 18

6.1. Operating conditions ... 19
6.2. Conformity with the following standards .. 19
6.3. Rating plate specifications.. 20
6.4. Information on the additional plates .. 21
6.5. Mechanical data... 22
6.6. Pneumatic data ... 24
6.7. Position measuring system data... 25
6.8. Factory settings in the firmware 26
6.8.1. Feedback fields (position measuring system) 26
6.8.2. Service/maintenance notification 27
6.8.3. Manual control function (magnetic) 27
6.8.4. Function „Cycle stroke color S3/S4 different" 28
6.9. Resetting the device (Device Reset) 28
5. INSTALLATION 30
7.1. Safety instructions 30
7.2. Assembly of the control head 30
7.2.1. Hub flange 30
7.2.2. Assembly sequence in the example of a double seat valve. 31
7.2.3. Realignment of the control head 32
7.2.4. Assembly of the pneumatic and electrical connections 32
7.2.5. Recommended auxiliary materials 32
6. OPENING AND CLOSING THE HOUSING 33
8.1. Safety instructions 33
8.2. Opening and closing the housing 33
8.2.1. Opening the housing 33
8.2.2. Closing the housing 33
7. PNEUMATIC INSTALLATION 35
9.1. Safety instructions 35
9.2. Pneumatic connection of the control head 35
9.2.1. Pneumatic connection (standard) 36
9.2.2. Retrofitting in case of intensive external cleaning 36
9.3. Flow restriction function of the solenoid valves 37
8. 24 V DC - DESIGN 39
10.1. Electrical connection options 39
10.2. Electrical data 39
10.3. Design aid 41
10.4. Safety instructions 42
10.5. Electrical installation / start-up 42
10.5.1. Cable gland with screw terminals 42
10.5.2. Multi-pole connection 45
9. AS INTERFACE - DESIGN 46
11.1. Definition 46
11.2. Electrical connection options for AS interface 47
11.3. Number of connectable control heads and maximum length of the bus line 47
11.4. Electrical data 48
11.5. Design aid 50
11.6. Safety instructions 51
11.7. Electrical installation, AS interface 52
11.8. Programming data 54
10. DEVICENET DESIGN 55
12.1. Definition 55
12.2. Electrical connection option 55
12.3. DeviceNet specification. 55
12.3.1. Total line length and maximum line length according to DeviceNet specification. 56
12.3.2. Drop line length 56
12.4. Electrical data 57
12.5. Safety position if the bus fails 57
12.6. Design aid 58
12.7. Safety instructions 59
12.8. Electrical installation - DeviceNet 59
12.9. Network topology of a DeviceNet system 61
12.10. Configuring the DeviceNet address / baud rate 61
12.10.1. Settings of the DeviceNet address 62
12.10.2. Setting the baud rate 63
12.11. Configuration of the process data 63
12.11.1. Static input assemblies. 63
12.11.2. Static output assembly 64
12.12. Configuration of the device 64
12.12.1. Configuration of the safety position of solenoid valves if bus error 64
12.12.2. Configuration example 65
12.13. Display of the status LEDs in the event of a bus error 66
12.13.1. State of device status LED "Modules" 66
12.13.2. State of bus status LED "Network" 67
11. 120 V AC DESIGN 68
13.1. Electrical connection options 68
13.2. Electrical data 68
13.3. Design aid 70
13.4. Safety instructions 71
13.5. Electrical installation / start-up 71
12. CONNECTION OF AN EXTERNAL INITIATOR. 74
13. DESIGN FOR DOUBLE-ACTING ACTUATORS 76
15.1. Anomalies 76
15.2. Fluid diagram 76
15.3. Electrical connection (24 V / 120 V design) 76
15.4. Programming data (AS-i design) 76
14. POSITION MEASURING SYSTEM 77
16.1. Setting the position measuring system (Teach-In) 77
16.2. Teach-In functions 79
16.2.1. Teach-In functions and Teach-In reset 79
16.2.2. Autotune functions 79
16.2.3. Autotune sequence 80
16.3. Changing the feedback field - Feedback Field Mode (FFM) 83
15. LED - COLOR ASSIGNMENTS 84
17.1. Setting the color combinations 85
17.1.1. Setting of possible color combinations (classic), 85
17.1.2. Color combinations with active function „cycle stroke color S3/S4 different" 85
17.2. Blinking pattern \& fault signaling 86
17.3. Signal priorities 87
16. SERVICE MODE / MANUAL CONTROL 90
18.1. Magnetic manual control 90
18.2. Mechanical manual control 91
17. MAINTENANCE, TROUBLESHOOTING 92
19.1. Safety instructions 92
19.2. Safety positions 93
19.3. Maintenance / service 94
19.4. Cleaning 94
19.5. Malfunctions 94
18. REPLACEMENT OF COMPONENTS AND MODULES 96
20.1. Safety instructions 96
20.2. Changing the electronics module 97
20.3. Changing the valves 98
20.4. Changing the position measuring system 99
19. SPARE PARTS 102
20. SHUTDOWN 103
22.1. Safety instructions 103
22.2. Dismantling the control head IntelliTop 2.0 103
21. PACKAGING AND TRANSPORT 104
22. STORAGE 104
23. DISPOSAL 104

1. OPERATING INSTRUCTIONS

The operating instructions describe the entire life cycle of the device. Keep these instructions in a location which is easily accessible to every user, and make these instructions available to every new owner of the device.

WARNING!

The operating instructions contain important safety information!
Failure to observe these instructions may result in hazardous situations.

- The operating instructions must be read and understood.

Symbols:

§ DANGER!

Warns of an immediate danger!

- Failure to observe the warning will result in a fatal or serious injury.

1 WARNING!

Warns of a potentially dangerous situation!

- Failure to observe the warning may result in serious injuries or death.

1. CAUTION!

Warns of a possible danger!

- Failure to observe this warning may result in a moderate or minor injury.

NOTE!

Warns of material damage!

- Failure to observe the warning may result in damage to the device or the equipment.
! Indicates important additional information, tips and recommendations.
Di) Refers to information in these operating instructions or in other documentation.
\rightarrow Designates a procedure which you must carry out.

2. AUTHORIZED USE

Incorrect use of the control head IntelliTop 2.0 may be dangerous to people, nearby equipment and the environment.

- The control head has been designed for use as actuation of pneumatically operated process valves and / or for recording the switching states of these.
- The authorized data, the operating conditions and conditions of use specified in the contract documents and operating instructions are to be observed during use. These are described in Chapter "6. Technical Data".
- In view of the large number of application options, check and, if required, test prior to installation whether the control head is suitable for the specific application case.
If you are unsure, please contact your Pentair-Südmo contact.
- The device may be used only in connection with third-party devices and components which have been recommended or approved by Pentair Südmo.
- Any unauthorized reconstructions and changes to the control head are prohibited for safety reasons.
- Correct transportation, correct storage and installation as well as careful operation and maintenance are essential for reliable and problem-free operation.
- For connecting the control head, use line installations that do not cause any mechanical stresses.
- Use the device only as intended.

2.1. Export restrictions

If exporting the system/device, observe any existing restrictions.

3. BASIC SAFETY INSTRUCTIONS

These safety instructions do not make allowance for any

- Contingencies and events which may arise during assembly, operation, and maintenance of the devices.
- Local safety regulations - the operator is responsible for observing these regulations, also in relation to the installation personnel.

DANGER!

Danger - high pressure!

- Before loosening lines and valves, turn off the pressure and vent the lines.

Danger of explosion in explosive atmosphere (only in the event of a fault as zone 2)!

- Opening the hood or the housing in an explosive atmosphere is only allowed in a not energized state!
- Secure housing with lead seal or optionally with plastic self-cutting screws (diameter 3 mm , length approx. 10 mm ; e.g. Ejot PT screw $\mathrm{K} 30 \times 10$) to prevent it from being opened without a tool!
- Activating the DIP switches on the PCB, using the service interface and the Teach buttons, is not permitted in an explosive atmosphere!
- Layers of dust on the housing may not exceed 5 mm ! Lint, conductive and non-conductive dust particles are allowed. The inside of the housing must not be dirty!
- When wiping the control head, use a damp or anti-static cloth in the explosion-risk area to prevent electrostatic charges!
- Use only cables and cable glands which have been approved for the respective application area and which have been screwed into place according to the respective installation instructions!
- Close all unnecessary openings with locking screws/sealing plugs approved for explosions area!

© WARNING!

Risk of electric shock!

- Before reaching into the system (except for the Teach-In procedure in a non-explosive atmosphere) switch off the power supply and secure it to prevent restarting!
- Observe applicable accident prevention and safety regulations for electrical equipment!

General hazardous situations.

To prevent injuries:

- Ensure that the system cannot be activated unintentionally.
- Installation and maintenance work, as well as operator control actions may be carried out by authorized and qualified technicians only and with the appropriate tools.
- Do not make any unauthorized internal or external changes to the device!
- After an interruption in the electrical or pneumatic supply, ensure that the process is restarted in a defined or controlled manner.
- The device may be installed and operated only when in perfect condition and in consideration of the operating instructions.
- The general rules of technology apply to application planning and operation of the device.

NOTE!

Electrostatic sensitive components/modules!

- The device contains electronic components which react sensitively to electrostatic discharge (ESD). Contact with electrostatically charged persons or objects may be hazardous to these components. In the worst case scenario, they will be destroyed immediately or will fail after start-up.
- Observe the requirements in accordance with EN 61340-5-1 to minimize or avoid the possibility of damage caused by sudden electrostatic discharge!
- Also ensure that you do not touch electronic components when the supply voltage is on!

NOTE!

Risk of damage to property

- Do not connect any mechanically rigid connection parts, in particular those with long lever arms, as such connections could generate torques that might damage the control head.
- Do not supply the medium connections of the system with liquids or aggressive or flammable media!
- Do not subject the housing to mechanical loads (e.g. by placing objects on it or standing on it).
- Do not make any external changes to the housings of the device. Do not paint housing parts or screws.
- Only use compatible cleaning agents for cleaning the securely closed control head and always rinse thoroughly with clean water.

O
Control head IntelliTop 2.0 was developed with due consideration given to accepted safety rules and is state-of-the-art. Nevertheless, dangerous situations may occur.

4. GENERAL INFORMATION

4.1. Contact address

Check immediately upon receipt of the consignment that the contents are not damaged and that the type and scope agree with the delivery note and packing list.
If there are any discrepancies, please contact us immediately.

Contact address:

Pentair Südmo GmbH
Industriestraße 7
D-73469 Riesbürg
T: +49 (0)9081 8030
F: +49 (0)9081 803158
E: Email: info@suedmo.de
Website: www.suedmo.com

4.2. Warranty

Please refer to our general terms of sales and business.
The warranty is only valid if the control head is used as intended in accordance with the specified application conditions.

©
The warranty extends only to defects in the control head IntelliTop 2.0 and its components.
We accept no liability for any kind of collateral damage which could occur due to failure or malfunction of the device.

4.3. Information on the Internet

The operating instructions and data sheets for IntelliTop 2.0 can be found on the Internet at:
www.suedmo.com

5. SYSTEM DESCRIPTION

5.1. Intended application area

The control head IntelliTop 2.0 has been designed for use as actuation of pneumatically operated process valves and / or for recording the switching states of these.

5.2. General description

The control head IntelliTop 2.0 is used for actuating pneumatically operated process valves.
For process valve actuation, the control head can be equipped with up to three solenoid valves.
For the recording and feedback of the process valve switching positions to a higher-level control, the control head has been equipped with a contact-free position measuring system which operates with 3 discrete, adjustable feedback signals (Teach-In function).

The control head and the process valve are interconnected by an adapter. This produces an integrated, compact and decentralized system of feedback, actuation and valve function. The following advantages over centralized solutions working with valve clusters are achieved:

- low installation expenditure
- easy start-up
- shorter switching times and less air consumption due to shorter distances between the pilot valve and the process valve.

Various pneumatic and electrical connection variants are available.

5.3. Functions / options / designs

5.3.1. Structure of the control head

Fig. 1: \quad Structure of control head IntelliTop 2.0 (with 3 solenoid valves)

5.3.2. Structure of the control head (feedback top)

Fig. 2: \quad Structure of a feedback top (IntelliTop 2.0 without solenoid valves)

5.3.3. Fluid diagrams

Control head IntelliTop 2.0 - fluid diagram (with restriction capability for each solenoid valve):

Model with 3 solenoid valves Type 6524,
e.g. for double seat valve

Fig. 3: \quad Fluid diagram (model: 3 solenoid valves)

Control head IntelliTop 2.0-design for double-acting actuators - fluid diagram (with restriction option of each solenoid valve):

Model with 2 solenoid valves Type 6524 (solenoid valve 1: NC, solenoid valve 2: NO,
e.g. for process valves actuated on both sides (rest position) - compare also Chapter "15. Design for DoubleActing Actuators" on page 76.

Fig. 4: Fluid diagram (model for double-acting actuators: 2 solenoid valves, $N C^{*}+N O^{* * 1}$)

5.3.4. Number of solenoid valves

The control head for process valves has been designed for single-acting and double-acting valve actuators as well as for double seat and multi-position valves.

Type of use	Number of solenoid valves
Feedback top (repeater)	0
Control head for single-acting actuators	$1 \quad\left(\mathrm{NC}^{*}\right)$
Control head for actuators with 2 actuator chambers (both not energized actuator chambers deaerated)	$2\left(2 \times \mathrm{NC}^{*}\right)$
Control head for double seat valves with integrated lift function for both valve discs	$3\left(3 \times \mathrm{NC}^{\star}\right)$
Control head for double-acting actuators (with rest position)	$2\left(1 \times \mathrm{NC}^{*}+1 \times \mathrm{NO}^{* *}\right)$

Details on model for double-acting actuators (1 solenoid valve NC^{*}, 1 solenoid valve $\mathrm{NO}^{\star *}$) - see chapter "15. Design for Double-Acting Actuators" on page 76.

5.3.5. Pneumatic interfaces

- Intake \& exhaust air connections:
G $1 / 4$
Working connections:
G 1/8
- Integrated non-return valves in the solenoid valves' exhaust air duct

[^0]- Actuation of Connection 2/A1 (Solenoid Valve 1; normally the main stroke of the process valve) using the magnetic manual control that is externally accessible.
(both solenoid valves are actuated simultaneously for the model for double-acting actuators)
- Special silencers with a high flow-rate capacity to connection 3/R have already been mounted.
- The interior of the housing is protected against excessive overpressure, for example due to leakages, by a pressure-relief valve with output into the joint exhaust air connection $3 / R$.

5.3.6. Manual control

The control head provides the following as standard:

- a magnetic manual control that is easily accessible from the outside on the basis of encoded magnetic fields for Solenoid Valve 1 (Connection 2/A1), as well as
- a mechanical manual control accessible when the hood is open on each equipped solenoid valve.

The magnetic manual control has the following advantages:

- the control head does not need to be opened
- simple actuation tool for opening/closing solenoid valve 1 (main stroke) helpful for service/maintenance work on the process valve (both solenoid valves are actuated simultaneously for the model for double-acting actuators)
- LED display for the "activated manual control" status = service mode (see chapters "17. LED - Color Assignments" and "18. Service Mode / Manual Control")
$!$
For a detailed description of the manual control, see Chapter "18. Service Mode / Manual Control".

5.3.7. Position measuring system

The switching positions of the process valves are reported to the actuator by feedback signals from the solderless position measuring system. Connection to the control head is done by means of a simple adaptation to the actuator of the process valve.
Details are described in Chapters "6.7. Position measuring system data" and "16. Position Measuring System".

5.3.8. Other features

- Central optical position indicator for showing the process valve switching positions: Positions and status information can be indicated by 3 signal colors. The assignment of the signal colors and the "flashing pattern", which indicates the type of fault, are described in Chapter "17. LED - Color Assignments".
- Simple adaptation of the control head (for the position measuring system) to the process valve piston rod.
- Simple adjustment of the position measuring system by 3 Teach-In buttons on the electronics module.
- The capability of restricting the pilot valve (solenoid valve) for the individual setting of the expansion and retraction rates of the process valve and the individual setting of the flow-rate of the working connections.
- More energy efficient solenoid valve actuation by lowering the holding current during long-term operation

6. TECHNICAL DATA

6.1. Operating conditions

DANGER!

Danger of explosion when used in explosive atmosphere (only in the event of a fault as zone 2)!

- Do not expose the device to any mechanical or thermal loads that will exceed the limits described in the operating instructions.

WARNING!

Risk of injury from overheating of the control head.
Heating above the permitted temperature range can endanger people, the device and the environment.

- Do not expose the device to any mechanical or thermal loads that will exceed the limits described in the operating instructions.

Ambient temperature:
Standard version: $-10 \ldots+55^{\circ} \mathrm{C}$
Explosive atmosphere (Zone 2): $+5 \ldots+55^{\circ} \mathrm{C}$

Degree of protection:

Standard version:

IP65 / IP67 according to EN 60529
(only if cables, plugs and sockets have been connected correctly, the hood has been sealed correctly and the adaptation to the process valve was done correctly)

IP69K according to IEC 40050-9
(Housing seal with connected exhaust air line instead of silencer and ideally closed cable glands confirmed through IP69K Standard testing)

Version for use in explosive atmosphere (Zone 2):
IP64 according to EN 60529 and requirements EN 60079-0: 2009
(only if cables, plugs and sockets have been connected correctly, the hood has been sealed correctly and the adaptation to the process valve was done correctly)

6.2. Conformity with the following standards

The control head IntelliTop 2.0 complies with the EU directives according to the EU Declaration of Conformity.
The applied standards which are used to demonstrate compliance with the Directives are listed in the EU Declaration of Conformity. This may be requested from Pentair Südmo.

The specifications on the respective rating plate or possibly existing additional plates apply to the respective control head. The symbols on the rating plate indicate the applicable directives or approvals - see following paragraphs.

6.3. Rating plate specifications

The specifications on the rating plate indicate the technical data and approvals applicable to the respective control head. The symbols on the rating plate (example) mean:

Rating plat	
Line 1 Line 2 Line 3 Line 4 Line 5 Line 6	
Line 1	Device designation
Line 2	Supply voltage or type of communication (24 V DC, AS-i, DevNet, 120 V DC) Number of solenoid valves ("MV"): MVO = no solenoid valve, MV1 = 1 solenoid valve, single-action, MV2 $=2$ solenoid valves, not double-acting, MV3 $=3$ solenoid valves, MVD $=2$ solenoid valves, double-acting) Pressure range
Line 3	any specifications, if applicable, according to ATEX Directive 94/9/EC (gas) / ambient temperature (Tamb)
Line 4	any specifications, if applicable, according to ATEX Directive 94/9/EC (dust) / degree of protection specification (IP)
Line 5	Additional ID number / serial number S/N
Line 6	ID number (Pentair Südmo) / manufacturer's specifications
	Further symbols and information on the rating plate indicate special approvals or relevant approval information for this device

Further possible symbols on the rating or additional plate:

C	Device complies with European standards according to EU Declaration of Conformity
$\langle\varepsilon\rangle$	Approval according to (potentially explosive atmospheres) "ATEX" Directive
$\widehat{\text { FM }}$	FM approval for explosion-proof equipment
c (UL) US	UL approval for USA and Canada

Details of the Directives:

6.4. Information on the additional plates

Additional plates indicate additional approvals and special operating conditions.

Warning sign for use of the device in potentially explosive atmosphere	
Line 1	Ex nA IIC T4 Gc X Tamb $+55^{\circ} \mathrm{C}$ Ex tc IIIC T 135 ${ }^{\circ} \mathrm{C}$ Dc X Line 2 WARNING - POTENTIAL ELECTROSTATIC CHARGING Line 3 Line 4
Line 1	Specifications according to ATEX directive (gas) / ambient temperature
Line 2	Specifications according to ATEX directive (dust) / degree of protection specification
Line 3	WARNING - POTENTIAL ELECTROSTATIC CHARGING
Line 4	HAZARD - SEE INSTRUCTIONS

Additional plate for devices with UL approval

UL label with UL file no.

Note on use of power supply unit according to NEC Class 2

Permissible supply voltage (24 V DC)

6.5. Mechanical data

Fig. 5: Dimensional drawing (for models with 1 to 3 solenoid valves)
*) Plastic self-cutting screws:
Diameter 3 mm , length approx. 10 mm ; e.g. Ejot PT screw K 30×10;
max. tightening torque 0.4 Nm
(after completely screwing in the screw, loosen it again by one half turn)!

Fig. 6: Dimensional drawing (for models without solenoid valves)
*) see note to "Fig. 5"

Weight:
Housing material:

Sealing material:
approx. 0.8 kg
exterior: PA, PC, PPO, VA
inside: ABS, PA, PMMA
exterior: CR, EPDM
inside: EPDM, FKM, NBR

6.6. Pneumatic data

Control medium:	Air, neutral gases Quality classes in accordance with DIN ISO 8573-1 ($5 \mu \mathrm{~m}$ filter recommended)
Dust content Quality class 7:	max. particle size $40 \mu \mathrm{~m}$, max. particle density $10 \mathrm{mg} / \mathrm{m}^{3}$
Water content Quality class 3:	max. pressure dew point $-20^{\circ} \mathrm{C}$ or $\mathrm{min} .10^{\circ} \mathrm{C}$ below the lowest operating temperature
Oil content Quality class X :	max. $25 \mathrm{mg} / \mathrm{m}^{3}$
Temperature range of compressed air:	$-10 \ldots+50^{\circ} \mathrm{C}$
Pressure range:	2.5 ... 8 bar
Air rate solenoid valve:	$110 \mathrm{I}_{\mathrm{N}} / \mathrm{min}$ (for ventilation and deaeration, aeration) ($110 \mathrm{I}_{\mathrm{N}} / \mathrm{min}$ - supplied state $200 I_{N} /$ min - maximum typical flow rate) $\left(\mathrm{Q}_{\mathrm{Nn}}\right.$ value according to definition when pressure drops from 7 to 6 bar absolute at $+20^{\circ} \mathrm{C}$)
Connections:	Intake and exhaust air connection G1/4 Working connections $G 1 / 8$

The intake and exhaust air can be set separately for each solenoid valve using flow restriction screws, in order to be able to affect the expansion and retraction rates of the process valve (see figure below).

Fig. 7: Flow restriction screws of the solenoid valves

1
When setting the retraction and extension rates of the pneumatic actuator, ensure that there is no constant "primary pressure" during deaeration!

Keep in mind that the working conditions in the process valve area on the side of the product (flow types, pressure variations) may result in changes in the set aeration and deaeration times.

6.7. Position measuring system data

Stroke range (measuring range):
Total error:
$0 . . .85 \mathrm{~mm}$
$\pm 0.5 \mathrm{~mm}$ - when using a specification-compliant attachment kit (error refers to the reproducibility of a taught position)

The diagram in "Fig. 8" shows the dimensional relationships between the control head and the piston with target.

Fig. 8: \quad Sectional view of control head and piston with target (in upper and lower end position)

6.8. Factory settings in the firmware

! The service interface may only be used in non-explosive atmosphere.
The control head is supplied with the following factory settings of the firmware:

6.8.1. Feedback fields (position measuring system)

A feedback field is the area within which a position (e.g. S1) is reported back.

Signal	Feedback field at top (positive)		Feedback field at bottom (negative)	
	Factory setting $[\mathbf{m m}]$	Adjustment range $[\mathbf{m m}]$	Factory setting $[\mathbf{m m}]$	Adjustment range $[m m]$
S1	+3.00	$+12.00 \ldots+0.50$	-3.00	$-0.50 \ldots-12.00$
S2	+3.00	$+12.00 \ldots+0.50$	-3.00	$-0.50 \ldots-12.00$
S3	+1.00	$+12.00 \ldots+0.50$	-1.00	$-0.50 \ldots-12.00$

(Reference: upper edge of the target)	Target	Stroke [mm] 85 82 8	Feedback field S1 [mm]	Ensure that the teach points including their feedback fields are within the measuring range.

Fig. 9: \quad Schematic diagram of the feedback fields in the example of the position S1 (not to scale)

(
Overlaps of S1/S2/S3 are possible (see Chapter "17.3. Signal priorities").

The factory settings for the feedback fields can be changed by the PC software for the IntelliTop 2.0 or by the "Feedback Field Mode" (see Chapter "16.3. Changing the feedback field - Feedback Field Mode (FFM)" on page 83) or by the Autotune function 6 (see Chapter "16.2.2. Autotune functions" on page 79).

6.8.2. Service/maintenance notification

Factory setting for the "Service/maintenance notification" function: not active.
When Service/maintenance notification is activated, this is indicated by a special flashing pattern - see Chap. "17.2. Blinking pattern \& fault signaling" on page 86.

The Service/maintenance notification is used to observe predefined maintenance intervals which should occur either after an adjustable number of switching cycles or when a certain time has elapsed. PC software is used to adjust the service/maintenance interval (number of days or switching cycles) as well as activation/deactivation of the "Service/maintenance notification" function.

Connection to the PC is via the Service interface - see "Fig. 10: Location of the Service interface on the electronics module". Details on the "Service" menu option are described in the "PC software" manual.

Feedback, indicating that a service / maintenance is required (Service/maintenance notification), occurs when a Service/maintenance notification is activated after the following counter readings:

Counter readings (service interval)	Factory setting	Adjustment range
Switching cycle counter V1	10000	$(1 \ldots 255) \times 1000$
Switching cycle counter V2	50000	$(1 \ldots 255) \times 1000$
Switching cycle counter V3	50000	$(1 \ldots 255) \times 1000$
Operating duration	365 days	$1 \ldots 65535$ days

The resettable operating hour and switching cycle counters are reset to "0" when a Device Reset occurs.

6.8.3. Manual control function (magnetic)

Factory setting for magnetic manual operation: active.
Deactivation is possible using PC software. Connection to the PC is via the Service interface see "Fig. 10: Location of the Service interface on the electronics module".
Details are described in the "PC software" manual under the "SYSTEM / Start-up" menu option.
Even the Autotune function 6 deactivates the magnetic manual control function - see Chapter "16.2.3. Autotune sequence" on page 80, (sequence for "Autotune 6"). Compare also chapter "18.1. Magnetic manual control" on page 90.

Fig. 10: Location of the Service interface on the electronics module

6.8.4. Function „Cycle stroke color S3/S4 different"

Factory setting of this function:

 not activeTo make the position feedback of S3 and S4 more clearly distinguishable than only in the flashing frequency, the "cycle stroke color S3/S4 different" function can be selected via the PC software. This function reports the position of S3 and S4 in different colors but with the same flashing frequency (250 ms ON / 250 ms OFF).

Details on color coding for this function can be found in chapter "17.1.2. Color combinations with active function "cycle stroke color S3/S4 different"" on page 85.

6.9. Resetting the device (Device Reset)

The device can be reset to factory settings directly on the control head or by the PC software.
Procedure - Device Reset directly on the control head:
\rightarrow Simultaneously actuate T1 + T2 + T3 (approx. 2.5 s long) - to access "Device Reset" mode - the corresponding flashing pattern is: always alternating 500 ms RED, 500 ms GREEN. If the device is not reset 10 s after switching to "Device Reset" mode, this mode is automatically left.
\rightarrow Simultaneously actuate T1 + T2 + T3 again (approx. 2.5 s long) - this will reset the device. The flashing pattern 250 ms ON / 250 ms OFF in the fault color indicates that the device was reset.

Procedure - Device Reset using PC software:

\rightarrow To do this, select the "General start-up" submenu in the "SYSTEM" main menu and press the "DEV RESET" button (see also PC software manual).

Device Reset resets the following values to the factory setting:

- Teach positions S1...S3
- Feedback fields from S1...S3
- Resettable switching cycle counters V1...V3
- Resettable operating duration
- Service intervals switching cycles V1...V3
- Service interval operating duration
- Service/maintenance notification (signaling of elapsed maintenance intervals)
- Manual control function
- Monitoring with external initiator S4 whether upper valve disc has been closed
- Feedback external initiator S4 as S1
- All valves can be actuated (simultaneously)
all positions "not taught"
(see Chapter "6.8.1" on page 26)
(see Chapter "6.8.2" on page 27)
not active (see Chapter "6.8.2" on page 27)
active (see Chapter "6.8.3" on page 27)
(see Chapter "17.3" on page 87, example 2)
not active (see "PC software" manual)
not active (see "PC software" manual, but setting has no function for the model for double-acting actuators - see Chapter "15" on page 76)

Device Reset does not reset the following values to factory settings:

- Switching cycle counter Total V1...V3
- Operating duration Total
- Cycle stroke color S3/S4 different
(see chapter "17.1.2" on page 85 and PC software)
- Averaging procedure position measuring system (see "PC software")
- AS-i address
(see chapter "11.8" on page 54)
- AS-i profile
- DeviceNet Input Assembly
(see Chapter "12.11.1" on page 63)

7. INSTALLATION

7.1. Safety instructions

DANGER!
 Risk of injury from high pressure in the system!
 - Before loosening lines and valves, turn off the pressure and vent the lines.

! WARNING!

Risk of injury due to electric shock!

- Before reaching into the system (except for the Teach-In procedure in a non-explosive atmosphere) switch off the power supply and secure it to prevent restarting!
- Observe applicable accident prevention and safety regulations for electrical equipment!

Risk of injury from improper assembly!

- Assembly may only be carried out by authorized technicians and with the appropriate tools!

Risk of injury from unintentional activation of the system and uncontrolled restart!

- Secure system against unintentional activation.
- Following assembly, ensure a controlled restart.

7.2. Assembly of the control head

The control head can be installed in any installation position, preferably with the hood face up.
The device should be installed such that layers of dust thicker than 5 mm cannot form; meaning that such should be ensured through correspondingly regular cleaning.

When used in explosive atmosphere (Zone 2) the devices must be installed in a protected installation location according to IEC/EN 60079-0.

7.2.1. Hub flange

WARNING!

Risk of injury from improper assembly!

- Do not improperly stress the control head.
- Do not apply any leverage effect on the head and do not climb on it.
- When sealing the flange from the outside to the inside, make sure that the inflow of cleaning agent is considered and that the actuator space of the process valve towards the control head is sealed.

For the installation of the control head IntelliTop 2.0 to a process valve, you will require a process valve-specific hub flange as an adapter.

The hub flange must be adapted to the design of the process valve and produce the mechanical con-
(shoulder screws M5), which engage in the middle groove of the hub flange (protection against pulling off). The control head can radially slide into any position in 360° arc, seamlessly.

The hub flange and non ferromagnetic piston rod with the target which is used to record the position must comply with the specifications with regard to material and stability - only specification-compliant attachment kits may be used.

Fig. 11: Schematic diagram of the control head - process valve adaptation
(*) The fastening materials for target and piston rod, as well as the piston rod itself, may not be made of material with very good electrical conductivity (e.g. copper, aluminum) or of ferromagnetic material.
0
To ensure the proper function of the position measuring system, the axial deviation of the adapter must be less than $\pm 0.1 \mathrm{~mm}$ to the spindle when mounted!

- Use Pentair Südmo adaptations only.
- Prior to assembling the control head onto the hub flange, lightly grease the O-rings with a silicone grease (e.g. Paraliq GTE 703).
- The hood must be lead-sealed in the explosion-risk area to prevent the housing from being opened without a tool! (Optionally the hood can also be locked with plastic self-cutting screws, see note to "Fig. 5" on page 22.)

For dimensional relationships, see also Chapter "6.7. Position measuring system data".

7.2.2. Assembly sequence in the example of a double seat valve

Procedure:

\rightarrow Mount the piston rod with the target on the process valve spindle. Observe reference dimensions!
\rightarrow Fasten the hub flange on the process valve.
During this, observe central alignment and sealing conditions!
\rightarrow Check the secure fit of the sealing rings (in the upper and lower grooves).
\rightarrow Mount the control head on the hub flange (seamlessly 360° rotatable).
\rightarrow Secure control head with the two locking screws (shoulder screws M5) in the middle groove of the hub flange to prevent it from being pulled off the hub flange - tightening torque: max. 3.2 Nm (see "Fig. 11: Schematic diagram of the control head - process valve adaptation").

7.2.3. Realignment of the control head

If necessary, the control head can be realigned, in particular if properly accessible installation of the pneumatic supply lines is not possible due to spatial conditions. This might also be required for operational aspects (accessibility of the manual control) and because of electrical connection possibilities.

Procedure:

\rightarrow Loosen the locking screws (shoulder screws M5) slightly until the underside of the screw head is flush with the auxiliary surface of the housing.

The locking screw is sufficiently tightened when the upper side of the screw head is flush with the auxiliary surface of the housing. Tightening torque: max. 3.2 Nm

\rightarrow Rotate the control head until the desired alignment has been achieved.
\rightarrow Secure the control head with locking screws again until the upper side of the screw head is flush with the auxiliary surface of the housing. The locking screws have no sealing function. The control head is not fixed in place by the locking screws but is merely secured against being pulled off the hub flange.

7.2.4. Assembly of the pneumatic and electrical connections

Pneumatic installation

see Chapter "9. Pneumatic Installation"

Electrical installation

24 V DC: \quad see Chapter "10. 24 V DC - Design"
AS-Interface: see Chapter "11. AS Interface - Design"
DeviceNet: see Chapter "12. DeviceNet Design"
120 V AC: see Chapter "13. 120 V AC Design"

7.2.5. Recommended auxiliary materials

Silicone grease Paraliq GTE 703 for easy lubrication of the EPDM seals.

8. OPENING AND CLOSING THE HOUSING

8.1. Safety instructions

DANGER!
 Risk of injury from high pressure in the system!

- Before loosening lines and valves, turn off the pressure and vent the lines.

Danger of explosion in explosive atmosphere (only in the event of a fault as zone 2)!

- Opening the hood or the housing in an explosive atmosphere is only allowed in a not energized state!

WARNING!

Risk of injury due to electric shock!

- Before opening the hood and prior to reaching into the system (aside from a Teach-In procedure in a nonexplosive atmosphere), switch off the power supply and secure to prevent restarting!
- Observe applicable accident prevention and safety regulations for electrical equipment!

Risk of injury from improper installation!

- Installation may be carried out by authorized technicians only and with the appropriate tools!

Risk of injury from unintentional activation of the system and uncontrolled restart!

- Secure system against unintentional activation.
- Following installation, ensure a controlled restart.

8.2. Opening and closing the housing

8.2.1. Opening the housing

NOTE!

Improper handling will damage the plastic hood / seal!

- Do not use excessive force (e.g. by knocks) for opening.
- Make sure that the lubricated seal contour is not soiled when the hood is placed down as this might reduce the IP protection!

Procedure:

\rightarrow Remove lead seal (or plastic self-cutting screws) if housing secured.
\rightarrow Open the plastic hood by turning counterclockwise (all the way, approx. 1.5 cm). Due to the tightness of the sealing, loosen the plastic hood by carefully tilting it laterally and lift it upwards to remove it.

8.2.2. Closing the housing

(O-rings and seals are wearing parts).
\rightarrow Turn the hood by approx. 1.5 cm clockwise (meaning until the sealing lugs are positioned over each other).
\rightarrow If required, attach lead seal (or plastic self-cutting screws, see note to "Fig. 5" on page 22) to prevent it from being opened without a tool.
$!$
The hood must be lead-sealed/secured in the explosion-risk area to prevent the housing from being opened without a tool!

9. PNEUMATIC INSTALLATION

9.1. Safety instructions

DANGER!
Risk of injury from high pressure in the system!

- Before loosening lines and valves, turn off the pressure and vent the lines.

§ WARNING!

Risk of injury from improper installation!

- Installation may be carried out by authorized technicians only and with the appropriate tools!

Risk of injury from unintentional activation of the system and uncontrolled restart!

- Secure system against unintentional activation.
- Following installation, ensure a controlled restart.

9.2. Pneumatic connection of the control head

1. DANGER!
 Risk of injury from high pressure in the system!

- Before loosening lines and valves, turn off the pressure and vent the lines.

Fig. 12: Pneumatic connection

9.2.1. Pneumatic connection (standard)

Procedure:

\rightarrow If required, realign the control head (see Chapter "7.2.3. Realignment of the control head")
\rightarrow A silencer has already been mounted on the exhaust air connection (3/R) in the supplied state. As needed, the silencer can be replaced by an exhaust air hose (e.g. after screwing in an appropriate plug-in hose connectors).
\rightarrow Connect the required working connections 2/A1 to 2/A3 (each according to model) with the corresponding connections on the process valve.
\rightarrow Connect the supply line to supply pressure connection 1/P (2.5 $\ldots 8$ bar).

NOTE!

Hose pipes!

- Only use calibrated hose pipes with $\varnothing 6 \mathrm{~mm}$ (or $1 / 4$ ") or respectively $\varnothing 8 \mathrm{~mm}$ (or $5 / 16$ ") outer diameter (tolerance +0.05 / -0.1 mm).
- Only use a suitable hose cutter when cutting hose pipes. This will safeguard against damage and impermissible deformation.
- Accordingly dimension hose length to prevent that the hose ends in the plug-in hose connectors generate any diagonally pulling stresses (curved outlet without eccentric stress).
- Only use suitable hose qualities (in particular for high ambient temperatures) that bear up under common stresses caused by the quick connector.

Silencer or exhaust air hose!

- When using an exhaust air hose, accordingly dimension its length to ensure that a QNn value $>620 \mathrm{I} / \mathrm{min}$ is reached.

Tip:
Dimension the hose lengths so that the control head can be removed from the process valve if required without any additional disassembly work.

9.2.2. Retrofitting in case of intensive external cleaning

In the case of very frequent intensive external cleaning, moisture, water or cleaning agents can enter the actuators of the process valves through the ventilation plug of the spring chamber. This can lead to malfunctions or failure of the actuator in the long term.
That can be prevented by venting the spring chamber via the control head.
For this purpose, a free valve seat in the control head will be equipped with a special cover plate (with an inside connection from "A" to "R") so that the process valve can be connected to the corresponding working connection 2/AX of the control head.

Special cover plate with an inside connection from "A" to "R" for a free valve seat
(featured in the color green)

(order no. 2333187)

Procedure:

\rightarrow Open the housing following the instructions in Chapter "8. Opening and Closing the Housing".
\rightarrow Unscrew the cover plate of an unused valve seat, ensure that the white non-return valve underneath does not fall out.
\rightarrow Fasten the cover plate with connection A-R instead of the previous cover plate (max. torque: 1 Nm).
\rightarrow Close the housing again - see also chapter "8. Opening and Closing the Housing".
\rightarrow Replace the dummy plug on the corresponding working connection 2/AX with a suitable air connection and connect it to the process valve actuator.

Recommendation!
Because moist air can still be drawn through the silencer into the exhaust air connection (3/R) of the control head during external cleaning and thus could enter the control head via the non-return valve, it is recommended not to screw the silencer directly into the $3 / \mathrm{R}$ connection, but to connect and fix it e.g. to an interposed angular quick fitting gland and a piece of hose (with the opening downwards).

9.3. Flow restriction function of the solenoid valves

Set the flow restriction screws of the solenoid valves only when needed and after completion of all necessary installations!

The flow restriction screws of the solenoid valves (see "Fig. 13: Flow restriction screws of the solenoid valves") are used for setting the air intake and exhaust for the working connections:

- Factory setting: QNn approx. 110 I/min.
- The flow restriction screws do not serve any sealing function.
- Only tighten the flow restriction screws to the stopper, otherwise damage to device may occur.
- Only use appropriate screwdrivers ($\mathrm{b} \leq 3 \mathrm{~mm}$).

Settings of the flow rate or the control speed with the help of the flow restriction screws:

\rightarrow Open the housing following the instructions in Chapter "8. Opening and Closing the Housing".
\rightarrow For proper setting, it is advisable to turn the two flow restriction screws initially into the minimum flow-rate position. The process valve will then initially move slowly so that you have more time to find the optimum setting during a switching operation.

$$
\begin{array}{ll}
\text { Minimizing the flow rate: } & \text { Turn clockwise } \\
\text { Maximizing the flow rate: } & \text { Turn counterclockwise }
\end{array}
$$

\rightarrow Observing the safety guidelines, activate the valve location to be set (either using the system control or the manual controls).
\rightarrow Turn the flow restriction screw "P" counterclockwise to set the required flow rate and therefore the opening time for the process valve. (Tool: flat-blade screwdriver, width $\leq 3 \mathrm{~mm}$).
\rightarrow Deactivate valve location.
\rightarrow Turn the flow restriction screw "R" counterclockwise to set the required flow rate and therefore the closing time for the process valve.

Fig. 13: Flow restriction screws of the solenoid valves

NOTE!

- Makes sure that all manual controls have been deactivated (hand lever all the way left, as pictured) after the setting work has been completed!
\rightarrow If no further installation work is required, close the housing following the instructions in Chapter "8. Opening and Closing the Housing".

If no system status is available during setting, readjust the system under system operation conditions if necessary.

Observe the safety guidelines during this!

10. 24 V DC - DESIGN

10.1. Electrical connection options

The following connection concepts are available for the electrical connection of the control head:

Fig. 14: Connection concepts 24 V DC

10.2. Electrical data

Power supply:

Connections:

Cable gland version:

Multi-pole connection version:

12 ... 28 V DC, residual ripple 10 \%
$1 \times$ M16 x 1.5 cable gland / SW22 - for power supply and signals, (only for transportation safety device sealed with dummy plugs, remove these before use!),
for cable diameter $5 \ldots 10 \mathrm{~mm}$,
for wire cross-sections 0.14 ... $1.5 \mathrm{~mm}^{2}$
$1 \times \mathrm{M} 16 \times 1.5$ - connection option for external initiator (sealed with dummy plug - remove these before use!)
$1 \times \mathrm{M} 16 \times 1.5$ cable gland / SW22 with multi-pole connection (M12 plug according to IEC 61076-2-101, 12-pole on a cable of 8 cm length for power supply and signals)
$1 \times \mathrm{M} 16 \times 1.5$ sealed with dummy plug (connection option for external initiator)

Power consumption (standby current): 30 mA at 24 V DC

Solenoid valves:

Max. switching capacity:
Type. Continuous output:
Power consumption per solenoid valve:

Operating mode:

Central display of the switching states:

Outputs/binary feedback signals:

Design:

Switchable output current:
Output voltage - active:
Output voltage - inactive:
max. 0.9 W (per solenoid valve)
0.6 W (per solenoid valve)

50 mA at 12 V DC
25 mA at 24 V DC
22 mA at 28 V DC
Long-term operation (100 \% ED)
42 mA with a power supply of 24 V DC per illuminated display; color switching see Chapter "17. LED - Color Assignments"

S1 out - S4 out
Normally open contact, PNP output
short-circuit-proof,
with self-clocking short-circuit protection
max. 100 mA per feedback signal
\geq (operating voltage -2 V)
max. 1 V in unloaded state

Input / proximity switches (external initiator: S4 in):

Power supply:
Current carrying capacity sensor supply:
Short-circuit protection
Design:

Input current 1 signal:
Input voltage 1 signal: Input current 0 signal: Input voltage 0 signal:

Inputs valve actuation (Y1-Y3):
Signal level - active:
Signal level - inactive:
Impedance:

Voltage present at the control head - 10% max. 90 mA

DC 2- and 3-wire,
Normally open contact, PNP output
$\mathrm{I}_{\text {Sensor }}>6.5 \mathrm{~mA}$, limited internally to 10 mA
$\mathrm{U}_{\text {Sensor }}>10 \mathrm{~V}$
$\mathrm{I}_{\text {Sensor }}<4 \mathrm{~mA}$
$\mathrm{U}_{\text {Sensor }}<5 \mathrm{~V}$
$U>10 \mathrm{~V}, \max .24 \mathrm{~V} D \mathrm{C}+10 \%$
$\mathrm{U}<5 \mathrm{~V}$
$>30 \mathrm{kOhm}$

10.3. Design aid

Power consumption of the electronics:

$\mathrm{P}_{\mathrm{EI}}=0.7 \mathrm{~W}$ or $\quad \mathrm{I}_{\mathrm{El}}=30 \mathrm{~mA}$ at 24 V

Power consumption of a valve during activation (200 ms):

$$
P_{\text {Valve-ON }}=0.9 \mathrm{~W} \quad \text { or } \quad I_{\text {Valve-ON }}=38 \mathrm{~mA} \text { at } 24 \mathrm{~V}
$$

Power consumption of a valve after reduction:

$P_{\text {Valve }}=0.6 \mathrm{~W} \quad$ or $\quad I_{\text {Valve }}=25 \mathrm{~mA}$ at 24 V

Power consumption of an optical position report:
$P_{\text {LED }}=1.0 \mathrm{~W}$
or
$I_{\text {LED }}=42 \mathrm{~mA}$ at 24 V

0
Also, if several control head valves were to be opened simultaneously, the switch signal will be sent staggered to the valves. Only one 0.9 W valve will ever be recorded.

Calculation examples:

Example 1:
3 valves are activated simultaneously, one position is reported (state for 200 ms):

| | $\mathrm{P}_{\text {Total }}=$ | P_{EI} | $+1 \times \mathrm{P}_{\text {Valve-ON }}+2 \times \mathrm{P}_{\text {Valve }}$ | $+1 \times \mathrm{P}_{\text {LED }}$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $3.8 \mathrm{~W}=0.7 \mathrm{~W}$ | $+1 \times 0.9 \mathrm{~W}$ | $+2 \times 0.6 \mathrm{~W}$ | $+1 \times 1.0 \mathrm{~W}$ | |
| or | | | | |

Example 2:

3 valves have been activated simultaneously, one position is reported (persistent state):

| $\mathrm{P}_{\text {Total }}=$ | $\mathrm{P}_{\text {EI }}$ | $+3 \times \mathrm{P}_{\text {Valve }}$ | $+1 \times \mathrm{P}_{\text {LED }}$ |
| :--- | :--- | :--- | :--- | :--- |
| $3.5 \mathrm{~W}=$ | 0.7 W | $+3 \times 0.6 \mathrm{~W}$ | $+1 \times 1.0 \mathrm{~W}$ |
| or | | | |
| | | | |
| | | | |

! When using an external initiator, its power requirement should be added.

10.4. Safety instructions

DANGER!

Danger of explosion in explosive atmosphere (only in the event of a fault as zone 2)!

- Opening the hood or the housing in an explosive atmosphere is only allowed in a not energized state!

WARNING!

Risk of injury due to electric shock!

- Before reaching into the system (except for the Teach-In procedure in a non-explosive atmosphere) switch off the power supply and secure it to prevent restarting!
- Observe applicable accident prevention and safety regulations for electrical equipment!
- When setting the position measuring system (Teach-In), do not contact any live components!

Risk of injury from improper installation!

- Installation may be carried out by authorized technicians only and with the appropriate tools!

Risk of injury from unintentional activation of the system and uncontrolled restart!

- Secure system against unintentional activation.
- Following installation, ensure a controlled restart.

10.5. Electrical installation / start-up

10.5.1. Cable gland with screw terminals

Procedure:

\rightarrow Open the housing following the instructions in Chapter "8. Opening and Closing the Housing".
\rightarrow Assemble connection cables for signals and power supply as well as for the external initiator where necessary in observance of the rules of technology.
\rightarrow Insert cables through the respective cable glands into the interior of the housing.
\rightarrow Connect the wires to the connection terminals according to the connection configuration described in "Fig. 15".

(1)If required, secure the cable with a cable clip!
\rightarrow Close the housing following the instructions in Chapter "8. Opening and Closing the Housing".

NOTE!

Ensure IP protection!

- To ensure IP protection, the union nuts of the cable glands must be tightened in accordance with the cable sizes or dummy plugs used (approx. 1.5 Nm).
- If no external initiator is used, the right connection opening must be sealed with a dummy plug!

NOTE!

Use of the control head in explosive atmosphere

- Only use cables and cable glands which are approved for the respective application area and fit the cable glands according to the respective operating instructions!
- Close all unnecessary openings with lock screws/plugs approved for explosions area!

24 V DC Electronics module, terminal strip configuration:

Fig. 15: 24 V DC electronics module

Designation Terminal strip	Configuration
24 V	Power supply 24 V
GND	GND
S1 OUT	Output position 1
S2 OUT	Output position 2
S3 OUT	Output position 3
S4 OUT	External initiator output
Y1	Solenoid valve 1 input
Y2	Solenoid valve 2 input
Y3	Solenoid valve 3 input

Designation Terminal strip	Configuration for external initiator
24 V	Power supply 24 V
S4 IN	External initiator input
GND	GND external initiator

Fig. 16: Circuit diagram 24 V DC

10.5.2. Multi-pole connection

Internal cabling work is not required for models with multi-pole connection, which makes installation and start-up on site considerably easier and quicker, reducing the risk of leaks. However, you will require the correspondingly assembled cable sets with the following pin assignment:

Input and output signals to the higher-level control (PLC):
12-pole circular plug-in connector M12 x 1.0 - male (acc. to IEC 61076-2-101)

Fig. 17: 12-pole multi-pole connection (view onto the plug pins)

Pin	Designation	Configuration
1	24 V	Power supply 24 V
2	GND	GND
3	S1 out	Output position S1
4	S2 out	Output position S2
5	S3 out	Output position S3
6	S4 out	External initiator output S4
7	Y1	Solenoid valve 1 input
8	Y2	Solenoid valve 2 input
9	Y3	Solenoid valve 3 input
10		Not used
11		Not used
12		Not used

11. AS INTERFACE - DESIGN

11.1. Definition

AS interface connection

AS interface (Actuator Sensor Interface) is a field bus system which is used primarily for networking binary sensors and actuators (slaves) with a higher-level control (master).

Connecting the control heads to higher bus systems is possible using commercially available gateways. Contact your distribution partner in this regard

Bus line

Unshielded two-wire line (AS interface line as AS interface cable harness) along which both information (data) and energy (power supply for the actuators and sensors) are transmitted.

Network topology

Freely selectable within wide limits, i.e. star, tree and line networks are possible. Further details are described in the AS interface specification (A/B slave model complies with the version 3.0 specification).

The control heads have been configured as AS interface version with an extended address range (A/B slaves) for 62 slaves or optionally as an AS interface version for 31 slaves. For details, see Chapter "11.8. Programming data".

11.2. Electrical connection options for AS interface

The following connection concepts are available for the electrical connection of the control head:

- Cable gland with multi-pole connection on a cable (8 cm length)
- Cable gland with multi-pole connection on a cable (80 cm length)

Fig. 18: Connection concepts for AS interface

11.3. Number of connectable control heads and maximum length of the bus line

The bus cable may be a maximum of 100 m long. All AS interface lines of an AS interface string must be considered for the design, i.e. even the drop lines to the individual slaves.
The level of expansion that is actually possible depends on the total number of all individual operating currents for each control head, which are supplied via the bus at the common AS interface bus segment (see example calculation).

Standard: AS interface / 62 slaves (AS interface version with extended addressing range (A/B slave)) In AS interface versions with extended addressing range (A/B slave), 1 master can communicate with 62 slaves.

Option: AS interface / 31 slaves (AS interface version with 31 slave addressing range)

In this case, a maximum of 31 control heads can be connected to a bus line (address range restriction).

Table of calculated line length of the control head versions:

When designing the system, consider the length of the round cable leading directly to the control head (see following table and example calculation).

Model	Calculated line length (including internal cabling)
Multi-pole (cable 8 cm)	0.3 m
Multi-pole (cable 80 cm)	1.0 m

Example:

for multi-pole connection with 8 cm cable:
When using 62 control heads, the AS interface cable harness may still be ($100 \mathrm{~m}-62$ * 0.3 m) = 81.4 m long.
If the calculated line length of 100 m were to be exceeded, a commercially available AS interface repeater may be used, as needed.

(1)Observe maximum power supply via certified AS interface power supply units ≤ 8 A! For details see AS interface specification.

Observe the optional design "AS Interface with External Power Supply" to reduce the load on the AS interface bus segment! (see Chapters "11.4" and "11.7")

©
Use cables according to the AS interface specification.
If other cables are used, the maximum cable length will change.

11.4. Electrical data

Comments / notes:

Outputs (from master perspective): Inputs (from master perspective):

Watchdog:

0 to 3 solenoid valves
3 binary feedback signals and 1 external initiator
If bus communication fails for more than 50 to 100 ms , the outputs are set to 0

Setting the valve's power supply using jumpers on the AS interface electronics module:

via AS interface	Externally (Connection see Chapter "11.7. Electrical installation, AS interface")

The control head IntelliTop 2.0 was developed according to the Complete Specification (V.3.0) and the Profile S-7.A.E and S-7.F.F of the AS International Association.

Connections:

Multi-pole connection version

Power supply:

$1 \times$ M16 $\times 1.5$ cable gland / SW19 with multi-pole connection (M12 plug according to IEC 61076-2-101, 4-pole on a cable of 8 or 80 cm length for power supply and signals)
$1 \times$ M16 x 1.5 - connection option for external initiator (sealed with dummy plug - remove these before use!)
29.5 ... 31.6 V DC (according to specification).
21.0 ... 31.6 V DC (according to specification Power24)

Input / proximity switches (external initiator: S4 in):
Power supply: AS interface voltage present at control head - 10%
Current carrying capacity, sensor
power supply:
max. 30 mA
Short-circuit protection
Design: DC 2- and 3-wire,
Normally open contact, PNP output
Input current 1 signal:
$\mathrm{I}_{\text {Sensor }}>6.5 \mathrm{~mA}$, limited internally to 10 mA
Input voltage 1 signal:
$\mathrm{U}_{\text {Sensor }}>10 \mathrm{~V}$
Input current 0 signal:
Input voltage 0 signal:
$\mathrm{I}_{\text {Sensor }}<4 \mathrm{~mA}$
$\mathrm{U}_{\text {Sensor }}<5 \mathrm{~V}$

Inputs (from master perspective) / binary feedback signals:

The recovery of the 3 valve positions reported back in binary format is described in Chapter "16. Position
Measuring System".
Outputs (from master perspective) / solenoid valves:

Max. switching capacity
Type. Continuous output
Watchdog function
Power reduction
Pull-in current
Holding current
Operating mode
Valve type
max. 0.9 W (per solenoid valve)
0.6 W (per solenoid valve)
integrated
integrated via AS interface electronics
30 mA or $0.9 \mathrm{~W} / 200 \mathrm{~ms}$ (at $30.5 \mathrm{~V}-\mathrm{AS}-\mathrm{i}$ voltage)
20 mA or $0.6 \mathrm{~W} \quad$ (at $30.5 \mathrm{~V}-\mathrm{AS}-\mathrm{i}$ voltage)
long-term operation (100 \% ED)
Type 6524

Central display of the switching states:

Power consumption from AS-i
at 30.5 V -AS-i voltage
Number of colors which can be displayed
max. 33 mA or 1 W per illuminated display
2 colors for process valve switching states
1 color for signaling a fault
For "universal color switching" see Chapter "17. LED - Color
Assignments".
Power supply via AS interface bus (without external power supply):
max. power consumption from AS-i
Power consumption during normal operation from the AS-i (after current reduction):

200 mA (including external initiator with 30 mA)
$\leq 150 \mathrm{~mA}$
3 valves activated, 1 position reported back by LED display, no external initiator

NOTE!

If all 3 solenoid valves are simultaneously controlled via the AS interface, the electronics will activate the valves sequentially with a 200 ms time delay to protect the bus from overloads.

$!$Please follow the instructions on power requirement and maximum expansion stage of the AS interface network in Chapter "11.3. Number of connectable control heads and maximum length of the bus line" and in the AS interface specifications, where applicable.

External power supply:

External power supply

19.2 V DC to 31.6 V DC

The power supply unit must include a secure disconnection in accordance with IEC 364-4-41. It must conform to the SELV standard. The ground potential must not have a ground connection.

Max. power consumption from external power supply for outputs (solenoid valves) -
without integrated current limiting
Max. power consumption from AS-i
for inputs and display
$\leq 110 \mathrm{~mA}$ at 24 V DC
$\leq 150 \mathrm{~mA}$ type.
Integrated short-circuit protection

!Please follow the instructions on power requirement and maximum expansion stage of the AS interface network in Chapter "11.3. Number of connectable control heads and maximum length of the bus line" and in the AS interface specifications, where applicable.

11.5. Design aid

Design aid for supply of the valves via the AS-i bus

Power consumption of the electronics:

$P_{E I} \quad=1.0 \mathrm{~W} \quad$ or $\quad \mathrm{I}_{\mathrm{EI}}=33 \mathrm{~mA}$ at 30.5 V
Power consumption of a valve during activation (200 ms):
$P_{\text {Valve-ON }}=0.9 \mathrm{~W} \quad$ or $\quad I_{\text {Valve-ON }}=30 \mathrm{~mA}$ at 30.5 V

Power consumption of a valve after reduction:

$$
P_{\text {Valve }} \quad=0.6 \mathrm{~W} \quad \text { or } \quad I_{\text {Valve }}=20 \mathrm{~mA} \text { at } 30.5 \mathrm{~V}
$$

Power consumption of an optical position report:

$$
P_{\text {LED }}=1.0 \mathrm{~W} \quad \text { or } \quad \mathrm{I}_{\text {LED }}=33 \mathrm{~mA} \text { at } 30.5 \mathrm{~V}
$$

For the design of the maximum line lengths observe Chapter "11.3. Number of connectable control heads and maximum length of the bus line".
!
Also, if several control head valves were to be opened simultaneously via the bus, the switch signal will be sent staggered to the valves. Only one 0.9 W valve will ever be recorded.

Calculation examples:

Example 1:

3 valves are activated simultaneously, one position is reported (state for 200 ms):

	$\mathrm{P}_{\text {Slave }}$	$=$	P_{EI}	$+1 \times \mathrm{P}_{\text {Valv-ON }}+2 \times \mathrm{P}_{\text {Valve }}$	$+1 \times \mathrm{P}_{\text {LED }}$
4.1 W	$=1.0 \mathrm{~W}$	$+1 \times 0.9 \mathrm{~W}$	$+2 \times 0.6 \mathrm{~W}$	$+1 \times 1.0 \mathrm{~W}$	
or					

Example 2:

3 valves have been activated simultaneously, one position is reported (persistent state):

	$\mathrm{P}_{\text {Slave }}$	$=\mathrm{P}_{\mathrm{EI}}$	$+3 \times \mathrm{P}_{\text {Valve }}$	$+1 \times \mathrm{P}_{\text {LED }}$
3.8 W	$=1.0 \mathrm{~W}$	$+3 \times 0.6 \mathrm{~W}$	$+1 \times 1.0 \mathrm{~W}$	
or				

$!$
When using an external initiator, its power requirement should be added.

11.6. Safety instructions

DANGER!

Danger of explosion in explosive atmosphere (only in the event of a fault as zone 2)!

- Opening the hood or the housing in an explosive atmosphere is only allowed in a not energized state!

WARNING!

Risk of injury due to electric shock!

- Before reaching into the system (except for the Teach-In procedure in a non-explosive atmosphere) switch off the power supply and secure it to prevent restarting!
- Observe applicable accident prevention and safety regulations for electrical equipment!

Risk of injury from improper installation!

- Installation may be carried out by authorized technicians only and with the appropriate tools!

Risk of injury from unintentional activation of the system and uncontrolled restart!

- Secure system against unintentional activation.
- Following installation, ensure a controlled restart.

11.7. Electrical installation, AS interface

Internal cabling work is not required for any of the AS Interface designs with multi-pole connection, which makes installation and start-up on site considerably easier and quicker, reducing the risk of leaks.

However, you will require the correspondingly assembled cable sets with the following pin assignments. Likewise, the jumpers on the electronics module must be set correspondingly (see figures below).

NOTE!

Use of the control head in explosive atmosphere

- Only use cables and cable glands which are approved for the respective application area and fit the cable glands according to the respective operating instructions!
- Close all unnecessary openings with lock screws/plugs approved for explosions area!

AS interface bus connection (power supply via bus / external power supply)
M12 $\times 1$ circular plug, 4 -pole, male (according to IEC 61076-2-101)
(view onto the plug installed in the head, from the front onto the pins)

Pin 2: NC

Bus connection power supply via bus

Pin 2: GND
Pin 3: ASI

Bus connection
with external power supply

Fig. 19: AS interface bus connection (power supply via bus / external power supply)

Pin	Configuration (supply via bus)	Configuration (external power supply)	Wire color
1	AS interface, ASI+	AS interface - ASI +	brown
2	Not used	GND	white
3	AS interface, ASI -	AS interface - ASI -	blue
4	Not used	$24 \mathrm{~V}+$	black

Power supply to the valves via the bus	External power supply to the valves

Fig. 20: Jumper setting on AS interface electronics module: Power supply to the valves via the bus or externally
The cable with multi-pole connection variant is especially suited for direct and flexible connection to the AS interface cable harness using the ribbon cable terminal that is optionally available.

The optional ribbon cable terminal contacts the AS interface cable harness by means of penetration technology which allows installation by "clipping in" the AS interface cable harness without cutting and without removing insulation.

Fig. 21: Optional ribbon cable terminal for AS interface cable harness

AS interface electronics module - LED status displays:

LED 1 "Power" (green)	LED 2 "Fault" (red)	Signalized status
off	off	Power OFF
on	on	No data traffic (expired Watchdog at slave address does not equal 0)
on	off	OK
flashing	on	Slave address = 0
flashing	flashing	Sensor supply overloaded / manual actuation activated / untaught / service/ maintenance request / PC software service mode

-

The central illuminated display flashes in the fault color (see Chapter "17.2. Blinking pattern \& fault signaling") if the status LED 2 "Fault" is active.

11.8. Programming data

The control heads have been configured as AS interface version with an extended address range (A/B slaves) for 62 slaves or optionally as an AS interface version for 31 slaves.

1
A change between the two configurations in the control head is only possibly by exchanging the electronic PCB!

If one control head is replaced with another control head having a different configuration in the AS interface field bus system (e.g. AS interface version 62 slaves (A/B-Slave) to replace a device with AS interface version 31 slaves), a configuration error will be generated at the master due to the different ID codes!
In this case (intentional replacement!), the current configuration must be re-projected in the AS interface master. Please read the operating instructions of the used AS interface master!

Factory setting AS-i address:

AS-i address $=0$

Programming Data Table

	Programming data for 62 Slaves AS interface - Device for A/B slave addressing (default device)	Programming data for 31 Slaves AS interface (optional)
I/O configuration	7 hex (4 inputs / 4 outputs) see below: Bit configuration table	7 hex (4 inputs / 4 outputs) see below: Bit configuration table
ID code	A hex	F hex
Extended ID code 1	7 hex	(F hex)
Extended ID code 2	E hex	(F hex)
Profile	S-7. A.E	S-7. F.F

Bit configuration table

Data bit	D3	D2	D1	D0
Input	External initiator S4	Position 3	Position 2	Position 1
Output	Not used	Solenoid valve 3	Solenoid valve 2	Solenoid valve 1
Parameter bit	P3	P2	P1	P0
Output	Not used	Not used	Not used	Not used

12. DEVICENET DESIGN

12.1. Definition

- The DeviceNet is a field bus system which is based on the CAN protocol (Controller Area Network). It enables actuators and sensors (slaves) to be networked with higher-level controllers (master).
- The control head in the DeviceNet is a slave device according to the Predefined Master/Slave Connection Set stipulated in the DeviceNet specification. Polled I/O, Bit Strobed I/O and Change of State (COS) are supported as I/O connection variants.
- With DeviceNet it is necessary to differentiate between cyclical or event-driven high-priority process messages (I/O Messages) and acyclical low-priority management messages (Explicit Messages).
- The protocol process conforms to the DeviceNet specification Release April 2010.

12.2. Electrical connection option

Cable gland with multi-pole connection
(M12 plug according to IEC 61076-2-101, 5-pole)

Connection left: Voltage, signals
Connection right: external initiator
Fig. 22: Connection concept DeviceNet

12.3. DeviceNet specification

EDS file
Icons
Baud rate

Address

Process data

INTELLITOP2.EDS
INTELLITOP2.ICO
125 kbit/s, 250 kbit/s, 500 kbit/s (can be adjusted using DIP switches 7, 8); factory setting: 125 kbit/s (see Chapter "12.10.2. Setting the baud rate")

0 ... 63 (via DIP switches 1 ... 6 adjustable); factory setting: 63 (see Chapter "12.10.1. Settings of the DeviceNet address")

2 static input assemblies
(Input: from IntelliTop 2.0 to DeviceNet master/scanner)
1 static output assembly

Inputs	3 discrete feedback signal of the position measuring system (positions S1-S3) 1 discrete feedback signal of the external initiator (S4) 1 analog position signal in mm supply via DeviceNet string (11 ... 25 V DC) Switch level high signal $\geq 5 \mathrm{~V}$ Switch level low signal $\leq 1.5 \mathrm{~V}$
Outputs	3 solenoid valves
Power consumption from the bus:	max. output 5 W , if all valves are switched (3xtype 6524 with 0.6 W each)

12.3.1. Total line length and maximum line length according to DeviceNet specification

The bus line is a 4-core cable with additional shielding which must conform to the DeviceNet specification. The cable transmits both information (data) and energy (power supply for low-power actuators and sensors).

I
The maximum total line length (sum of trunk lines and drop lines) of a network depends on the baud rate.

Baud rate	Maximum total line length*1	
	Thick Cable*2	Thin Cable*2
$\mathbf{1 2 5}$ kbaud	500 m	100 m for all baud rates
250 kbaud	250 m	
500 kbaud	100 m	

*1 According to DeviceNet specification. If a different cable type is used, lower maximum values apply.
*2 For cable designation and details - see DeviceNet specification

12.3.2. Drop line length

Baud rate	Length of the drop lines	
	Maximum length	Maximum total length of all drop lines in the network
	$\mathbf{~ m}$ for all baud rates	156 m
$\mathbf{2 5 0}$ kbaud		78 m
$\mathbf{5 0 0}$ kbaud		39 m

12.4. Electrical data

Connections:

"Multi-pole" $1 \times \mathrm{M} 16 \times 1.5$ cable gland / SW22 with multi-pole connection (M12 plug according to IEC 61076-2-101, 5-pole on a cable of 80 cm length) for DeviceNet bus and power supply
$1 \times$ M16 x 1.5 - connection option for external initiator (sealed with dummy plug - remove these before use!)

Power supply:

$11 \ldots 25 \mathrm{~V}$ DC (according to specification)

Max. power consumption:
200 mA at 24 V DC
Input / proximity switches (external initiator: S4 in):

Power supply:
Current carrying capacity sensor supply:
Short-circuit protection
Design:
Input current 1 signal:
Input voltage 1 signal: Input current 0 signal: Input voltage 0 signal:
via DeviceNet power supply - 10 \%
$\max .30 \mathrm{~mA}$
DC 2- and 3-wire,
Normally open contact, PNP output
$\mathrm{I}_{\text {Sensor }}>6.5 \mathrm{~mA}$, limited internally to 10 mA
$\mathrm{U}_{\text {Sensor }}>10 \mathrm{~V}$
$\mathrm{I}_{\text {Sensor }}<4 \mathrm{~mA}$
$\mathrm{U}_{\text {Sensor }}^{\text {Sensor }}<5 \mathrm{~V}$

Inputs (from master perspective) / binary or analog feedback signals:

The recovery of the 3 valve positions reported back in binary format or the analog position signal is described in Chapter "16. Position Measuring System".

Outputs (from master perspective) / solenoid valves:	
max. switching capacity	1.0 W (per solenoid valve)
typ. continuous output	0.6 W (per solenoid valve)
Power reduction	integrated via DeviceNet electronics
Pull-in current	120 mA typ. / 200 ms (3 valves)
Holding current	100 mA typ. at 24 V DC (3 valves)
Operating mode	long-term operation (100 \% ED)
Valve types	6524

Central display of the switching states:

Power consumption from DeviceNet
at 24 V DC
42 mA with 24 V DC power supply per illuminated display;
color switching see Chapter "17. LED - Color Assignments"

12.5. Safety position if the bus fails

If the bus fails, the solenoid valve is switched to a programmable safety position (default: solenoid valve not energized). For configuration data see Chapter "12.12.1. Configuration of the safety position of solenoid valves if bus error".

12.6. Design aid

Power consumption of the electronics:

$$
P_{\mathrm{EI}}=1.44 \mathrm{~W} \quad \text { or } \quad \mathrm{I}_{\mathrm{E} \mid}=60 \mathrm{~mA} \text { at } 24 \mathrm{~V}
$$

Power consumption of a valve during activation (200 ms):

$$
P_{\text {Valve-ON }}=1.0 \mathrm{~W} \quad \text { or } \quad I_{\text {Valve-ON }}=42 \mathrm{~mA} \text { at } 24 \mathrm{~V}
$$

Power consumption of a valve after reduction:

$$
P_{\text {Valve }}=0.6 \mathrm{~W} \quad \text { or } \quad I_{\text {Valve }}=25 \mathrm{~mA} \text { at } 24 \mathrm{~V}
$$

Power consumption of an optical position report:
$P_{\text {LED }}=1.0 \mathrm{~W}$
or
$I_{\text {LED }}=42 \mathrm{~mA}$ at 24 V

Calculation examples:

Example 1:

3 valves are activated simultaneously, one position is reported (state for 200 ms):

$\mathrm{P}_{\text {Total }}$	$=\mathrm{P}_{\mathrm{EI}}$
$5.44 \mathrm{~W}=3 \times \mathrm{P}_{\text {Valve-ON }}+1 \times \mathrm{P}_{\text {LED }}$	
$14 \mathrm{~W}+3 \times 1.0 \mathrm{~W}+1 \times 1.0 \mathrm{~W}$	

or

$\mathrm{I}_{\text {Total }}$	$=$	I_{EI}	$+3 \times \mathrm{I}_{\text {Valve-ON }}$
$228 \mathrm{~mA}=$	$+1 \times \mathrm{I}_{\text {LED }}$		
20 mA	$+3 \times 42 \mathrm{~mA}$	$+1 \times 42 \mathrm{~mA}$	

Example 2:

3 valves have been activated simultaneously, one position is reported (persistent state):

	$\mathrm{P}_{\text {Total }}$	$=\mathrm{P}_{\text {EI }}$	$+3 \times \mathrm{P}_{\text {Valve }}$
4.24 W	$=1.44 \mathrm{~W}$	$+3 \times 0.6 \mathrm{~W}$	$+1 \times 1.0 \mathrm{~W}$

- When using an external initiator, its power requirement should be added.

12.7. Safety instructions

DANGER!

Danger of explosion in explosive atmosphere (only in the event of a fault as zone 2)!

- Opening the hood or the housing in an explosive atmosphere is only allowed in a not energized state!

WARNING!

Risk of injury due to electric shock!

- Before reaching into the system (except for the Teach-In procedure in a non-explosive atmosphere) switch off the power supply and secure it to prevent restarting!
- Observe applicable accident prevention and safety regulations for electrical equipment!
- When setting the position measuring system (Teach-In), do not contact any live components!

Risk of injury from improper installation!

- Installation may be carried out by authorized technicians only and with the appropriate tools!

Risk of injury from unintentional activation of the system and uncontrolled restart!

- Secure system against unintentional activation.
- Following installation, ensure a controlled restart.

12.8. Electrical installation - DeviceNet

No internal cabling work is required for any of the DeviceNet designs (cable with multi-pole connection), which makes installation and start-up on site considerably easier and quicker, reducing the risk of leaks.
However, you will require the correspondingly assembled cable sets with the pin assignments described below:

Multi-pole connection DeviceNet

The control head features a 5-pole multi-pole circular plug (M12 x 1 circular plug, 5-pole, male) to a 80 cm long cable.
The configuration conforms to the DeviceNet specification.

View of plug from the front onto the pins:	Pin 4: $\mathrm{CAN}_{-} \mathrm{H}$ white Pin $5: \mathrm{CAN}_{-}$ blue
(shielding)	

Fig. 23: Bus connection of DeviceNet with power supply

Pin	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$
Signal	Shielding	$\mathrm{V}+$	$\mathrm{V}-$	CAN_H	CAN_L

DeviceNet electronics module:

Fig. 24: DeviceNet electronics module

Terminal strip configuration:

Designation Terminal strip	Configuration
V+	Power supply DeviceNet
V-	Power supply DeviceNet
CAN_H	Bus signal CAN high
CAN_L	Bus signal CAN low

Designation Terminal strip	Configuration
$\mathrm{V}+$	Power supply for external initiator
S4 IN	External initiator input
GND	GND external initiator

12.9. Network topology of a DeviceNet system

When installing a DeviceNet system, ensure that the terminating circuit of the data lines is correct. The circuit prevents the occurrence of interference caused by signals reflected onto the data lines.

The trunk line must be terminated at both ends with resistors of 120Ω and $1 / 4 \mathrm{~W}$ power loss (see "Fig. 25").
"Fig. 25" illustrates a line with one trunk line and several drop lines. Trunk lines and drop lines consist of identical material.

Fig. 25: Network topology

12.10. Configuring the DeviceNet address / baud rate

8 DIP switches are available for configuration:

- DIP switches 1 to 6 for the DeviceNet address
- DIP switches 7 to 8 for the baud rate

Fig. 26: Position of the DIP switches

12.10.1.Settings of the DeviceNet address

MAC ID address = Medium Access Control Identifier Address
MAC ID address $=\left[\right.$ DIP $1 \cdot 2^{0}+$ DIP $2 \cdot 2^{1}+$ DIP $3 \cdot 2^{2}+$ DIP $4 \cdot 2^{3}+$ DIP $5 \cdot 2^{4}+$ DIP $\left.6 \cdot 2^{5}\right]$
with DIP $x=$ off $=0 \quad$ and \quad DIP $x=o n=1$

Table of the settings of the DeviceNet address:

MAC ID	DIP1	DIP2	DIP3	DIP4	DIP5	DIP6
0	off	off	off	off	off	off
1	on	off	off	off	off	off
2	off	on	off	off	off	off
3	on	on	off	off	off	off
4	off	off	on	off	off	off
5	on	off	on	off	off	off
6	off	on	on	off	off	off
7	on	on	on	off	off	off
8	off	off	off	on	off	off
9	on	off	off	on	off	off
10	off	on	off	on	off	off
11	on	on	off	on	off	off
12	off	off	on	on	off	off
13	on	off	on	on	off	off
14	off	on	on	on	off	off
15	on	on	on	on	off	off
16	off	off	off	off	on	off
17	on	off	off	off	on	off
18	off	on	off	off	on	off
19	on	on	off	off	on	off
20	off	off	on	off	on	off
21	on	off	on	off	on	off
22	off	on	on	off	on	off
23	on	on	on	off	on	off
24	off	off	off	on	on	off
25	on	off	off	on	on	off
26	off	on	off	on	on	off
27	on	on	off	on	on	off
28	off	off	on	on	on	off
29	on	off	on	on	on	off
30	off	on	on	on	on	off
31	on	on	on	on	on	off
1	1					

MAC ID	DIP1	DIP2	DIP3	DIP4	DIP5	DIP6
32	off	off	off	off	off	on
33	on	off	off	off	off	on
34	off	on	off	off	off	on
35	on	on	off	off	off	on
36	off	off	on	off	off	on
37	on	off	on	off	off	on
38	off	on	on	off	off	on
39	on	on	on	off	off	on
40	off	off	off	on	off	on
41	on	off	off	on	off	on
42	off	on	off	on	off	on
43	on	on	off	on	off	on
44	off	off	on	on	off	on
45	on	off	on	on	off	on
46	off	on	on	on	off	on
47	on	on	on	on	off	on
48	off	off	off	off	on	on
49	on	off	off	off	on	on
50	off	on	off	off	on	on
51	on	on	off	off	on	on
52	off	off	on	off	on	on
53	on	off	on	off	on	on
54	off	on	on	off	on	on
55	on	on	on	off	on	on
56	off	off	off	on	on	on
57	on	off	off	on	on	on
58	off	on	off	on	on	on
59	on	on	off	on	on	on
60	off	off	on	on	on	on
61	on	off	on	on	on	on
62	off	on	on	on	on	on
63	on	on	on	on	on	on

12.10.2.Setting the baud rate

Adjustment of the control head to the baud rate of the network.

Baud rate	DIP 7	DIP 8
125 kbaud	off	off
250 kbaud	on	off
500 kbaud	off	on
not permitted:	(on)	(on)

If the settings are changed by actuating the DIP switches, this change will not take effect until the device is restarted!
For a restart

- briefly disconnect the control head from the power supply and reconnect or
- switch the power supply off/on or
- transmit an appropriate reset message.

12.11. Configuration of the process data

To transmit process data via an I/O connection, 2 static input and 1 static output assembly can be selected. These assemblies contain selected attributes combined into one object so that process data can be transmitted collectively via an I/O connection.

The process data is selected by setting the device parameters Active Input Assembly and Active Output Assembly or - if supported by the DeviceNet-Master/Scanner - by setting Produced Connection Path and Consumed Connection Path when an I/O connection is initialized according to the DeviceNet specification.

12.11.1.Static input assemblies

Name	Address of data attribute of the assemblies for read access. Class, instance, attributes	Format of the data attribute Value 0: OFF Value 1: ON
S1...S4 (factory setting)	$4,1,3$	Byte 0: Bit 0: Position S1 Bit 1: Position S2 Bit 2: Position S3 Bit 3: Position S4
S1...S4 + POS		Byte 0: (with POS: Position S1
Actual position	$4,2,3$	Bit 1: Position S2 Bit 2: Position S3
		Bit 3: Position S4
Bit 4...7: not used		
		Byte 1:

The addresses listed in the table above ("Static input assemblies") can be used as path data for the Produced Connection Path attribute of an I/O connection.

Nevertheless, by using this address data, the attributes combined in the assemblies can also be accessed acyclically via Explicit Messages.

12.11.2.Static output assembly

Name	Address of data attribute of the assemblies for read access. Class, instance, attributes	Format of the data attribute Value 0: OFF Value 1: ON
Solenoid valves 1...3	$4,21,3$	Byte 0:
		Bit 0: SV1
		Bit 1: MV2
Bit 2: MV3		
		Bit 3...7: not used

The address listed in the table above ("Static input assembly") can be used as path data for the Produced Connection Path attribute of an I/O connection.

Nevertheless, by using this address data, the attributes combined in the assemblies can also be accessed acyclically via Explicit Messages.

12.12. Configuration of the device

12.12.1. Configuration of the safety position of solenoid valves if bus error

The valve safety position and safety module attributes can be used to configure the solenoid valves in the event of a bus error.

If a bus error occurs, the configuration data of the solenoid valves can be accessed acyclically via Explicit Messages.

- The Get_Attribute_Single service stands for a read access of the configuration data.
- The Set_Attribute_Single service stands for a write access of the configuration data.

1 data byte for safety mode:
(Attribute address:
class 150, instance 1, attributes 7)

Bit	Mode	Value assignment
Bit 0	Character- istics in event of bus error	$0 \quad$Approach safety position 1 Retain last valve position Bits $1 \ldots 7$ not used $00 \quad$ (always)

1 data byte for valve safety position:
(Attribute address:
class 150, instance 1, attributes 6)

Bit	Solenoid valve	Value assignment
Bit 0	Y1 (solenoid valve 1)	Value 0: OFF / value 1: ON
Bit 1	Y2 (solenoid valve 2)	Value 0: OFF / value 1: ON
Bit 2	Y3 (solenoid valve 3)	Value 0: OFF / value 1: ON
Bits $3 . .7$	not used	$0 \quad$ (always)

12.12.2.Configuration example

The example describes the principle procedure when configuring the device using the RSNetWorx software for DeviceNet (Rev. 4.21.00).

Installation of the EDS file

The EDS file is installed with the aid of the EDS Installation Wizard Tool associated with RSNetWorx. During the installation procedure the icon can be assigned (if this does not occur automatically).

Offline parameterization of the device

When a device has been inserted into the DeviceNet configuration of RSNetWorx, the device can be parameterized offline.
"Fig. 27" indicates how, for example, an input assembly which deviates from the factory setting (input process data can be transferred via I/O connection) can be selected. However, ensure that the length of the process data during a subsequent configuration of the DeviceNet master/scanner is adjusted accordingly.
!
All parameter changes implemented offline must become operative for the real device at a later date by a download process.

Fig. 27: Selecting the input assembly (screenshot)

Online parameterization of the device

Devices can also be parameterized online. In doing so, you can also select whether only individual parameters (single) or all parameters (all) of a group are read from the device (upload) or are loaded into the device (download).
It is also possible to transfer individual parameters or all parameters of a group cyclically in monitor mode. This may be helpful particularly for start-up purposes.

12.13. Display of the status LEDs in the event of a bus error

$!$Bus errors are also indicated on the central three-colored status display, see Chapter "17.2. Blinking pattern \& fault signaling"!

The device status LED ("modules") and the bus status LED ("network") are located on the electronics module	

Function tests for both status LEDs after power has been switched on (connection of the network cable):

Status LED	Colors of the LED	Function test
"Modules"	green	$\cdot 250 \mathrm{~ms} \mathrm{ON}$ (green)
"Network"	green / red	$\cdot 250 \mathrm{~ms} \mathrm{ON}$ (green)
		.250 ms ON (red)

Then another function test is run during which the LEDs light up briefly.

When the test is complete, the status LEDs indicate the device states which are described in the following tables.

12.13.1.State of device status LED "Modules"

LED	Device state	Explanation
Off	No supply	- Device is not supplied with voltage
Green	Device is working	- Normal operating state

12.13.2.State of bus status LED "Network"

\(\left.$$
\begin{array}{|l|l|l|l|}\hline \text { LED } & \text { Device state } & \text { Explanation } & \text { Troubleshooting } \\
\hline \text { Off } & \begin{array}{l}\text { No voltage / not } \\
\text { online }\end{array} & \begin{array}{l}\text { - Device is not supplied with voltage } \\
\text { - Device has still not ended Duplicate } \\
\text { MAC ID Test (test lasts approx. 2 s) } \\
\text { - Device cannot end Duplicate MAC ID } \\
\text { Test. }\end{array} & \begin{array}{l}\text { - Connect other devices, if the } \\
\text { device is the only network } \\
\text { subscriber, }\end{array}
$$

- Replace device\end{array}\right\}\)| - Check baud rate |
| :--- |

13. 120 V AC DESIGN

13.1. Electrical connection options

Cable gland:

Connection left: voltage, signals
Connection right: external initiator
Fig. 28: Connection concept 120 V AC

13.2. Electrical data

Central power supply:
Connections: Cable gland

110 ... 130 V AC, $50 / 60 \mathrm{~Hz}$
$1 \times$ M16 x 1.5 cable gland / SW22 - for power supply and signals (only for transportation safety device sealed with dummy plugs, remove these before use!),
for cable diameter $5 \ldots 10 \mathrm{~mm}$, for wire cross-sections 0.5 ... $1.5 \mathrm{~mm}^{2}$, including PE connection terminal (tightening torque of the clamping screws max. 0.5 Nm)
$1 \times$ M16 x 1.5 - connection option for external initiator (sealed with dummy plug - remove these before use!)

Power consumption (standby current): 10 mA at 120 V AC

Solenoid valves:

Max. switching capacity:
1.7 VA (per solenoid valve)

Type. Continuous output:
1.4 VA (per solenoid valve)

Power consumption per solenoid valve: 1
12 mA at 120 V AC
Operating mode:
Long-term operation (100 \% ED)
Central display of the switching states: 13 mA with a power supply of 120 V AC per illuminated display; color switching see Chapter "17. LED - Color Assignments"

Outputs/binary feedback signals:
Design:
switchable output current:
Output voltage - active:
Output voltage - inactive:
Feedback signal output:

S1out - S3out
Normally open contact, L switching,
short-circuit protection via automatically resetting fuse
max. 50 mA per feedback signal
\geq (operating voltage -2 V)
max. 1 V in unloaded state
S4 out is directly connected to S4in

Input / proximity switches (external initiator: S4 in):

Power supply:
Design:
input current 1-signal:
Inputs valve actuation ($\mathrm{Y} 1-\mathrm{Y} 3$):
Signal level - active:
Signal level - inactive:
Impedance:
voltage present at control head $U_{\text {Nominal }}=120 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$ DC 2 and 3 -wire,
Normally open contact, L-switching
$I_{\text {Sensor }}$ $<2 \mathrm{~mA}$
$\mathrm{U}>60 \mathrm{~V}$ AC
U < 20 V AC
$>40 \mathrm{kOhm}$

13.3. Design aid

Power consumption of the electronics:

$$
\mathrm{P}_{\mathrm{EI}}=1.2 \mathrm{VA} \quad \text { or } \quad \mathrm{I}_{\mathrm{EI}}=10 \mathrm{~mA} \text { at } 120 \mathrm{VA}
$$

Power consumption of a valve during activation (200 ms):

$$
P_{\text {Valve-ON }}=1.7 \mathrm{VA} \quad \text { or } \quad I_{\text {Valve-ON }}=14 \mathrm{~mA} \text { at } 120 \mathrm{VA}
$$

Power consumption of a valve after reduction:

$$
\mathrm{P}_{\text {Valve }}=1.4 \mathrm{VA} \quad \text { or } \quad \mathrm{I}_{\text {Valve }}=12 \mathrm{~mA} \text { at } 120 \mathrm{VA}
$$

Power consumption of an optical position report:
$\mathrm{P}_{\text {LED }}=1.6 \mathrm{VA}$
or
$\mathrm{I}_{\text {LED }}=13 \mathrm{~mA}$ at 120 VA

$!$
Also, if several control head valves were to be opened simultaneously, the switch signal will be sent staggered to the valves. Only one valve 1.7 VA will ever be recorded.

Calculation examples:

Example 1:

3 valves are activated simultaneously, one position is reported (state for 200 ms):

	$\mathrm{P}_{\text {Total }}$	$=$	P_{EI}	$+1 \times \mathrm{P}_{\text {Valve-ON }}$	$+2 \times \mathrm{P}_{\text {Valve }}$	$+1 \times \mathrm{P}_{\text {LED }}$
7.3 VA	$=1.2 \mathrm{VA}$	$+1 \times 1.7 \mathrm{VA}$	$+2 \times 1.4 \mathrm{VA}$	$+1 \times 1.6 \mathrm{VA}$		
or						

Example 2:

3 valves have been activated simultaneously, one position is reported (persistent state):

$P_{\text {Total }}$	$=P_{E I}$	$+3 \times P_{\text {Valve }}$	$+1 \times P_{\text {LED }}$
7.0 VA	$=1.2 \mathrm{VA}+3 \times 1.4 \mathrm{VA}+1 \times 1.6 \mathrm{VA}$		

or

$\mathrm{I}_{\text {Total }}$	$=\mathrm{I}_{\mathrm{EI}}$	$+3 \times \mathrm{I}_{\text {Valve }}$	$+1 \times \mathrm{I}_{\text {LED }}$
$59 \mathrm{~mA}=$	$10 \mathrm{~mA}+3 \times 12 \mathrm{~mA}+1 \times 13 \mathrm{~mA}$		

! When using an external initiator, its power requirement should be added.

13.4. Safety instructions

!
 DANGER!

Risk of injury due to electric shock (110 ... 130 V AC)!

- Before reaching into the system (except for the Teach-In procedure in a non-explosive atmosphere) switch off the power supply and secure it to prevent restarting!
- Observe applicable accident prevention and safety regulations for electrical equipment!
- When setting the position measuring system (Teach-In), do not contact any live components!

Risk of electric shock if the PE connection is not connected!

- the PE connection must be connected!

Danger of explosion in explosive atmosphere (only in the event of a fault as zone 2)!

- Opening the hood or the housing in an explosive atmosphere is only allowed in a not energized state!

WARNING!

Risk of injury from improper installation!

- Installation may be carried out by authorized technicians only and with the appropriate tools!

Risk of injury from unintentional activation of the system and uncontrolled restart!

- Secure system against unintentional activation.
- Following installation, ensure a controlled restart.

13.5. Electrical installation / start-up

DANGER!

Risk of injury due to electric shock (110 ... 130 V AC)!

- Before reaching into the system (except for the Teach-In procedure in a non-explosive atmosphere) switch off the power supply and secure it to prevent restarting!
- Observe applicable accident prevention and safety regulations for electrical equipment!
- When setting the position measuring system (Teach-In), do not contact any live components!

Procedure:

\rightarrow Open the housing following the instructions in Chapter "8. Opening and Closing the Housing".
\rightarrow Assemble connection cables for signals and power supply as well as for the external initiator where necessary in observance of the rules of technology.
\rightarrow Insert cables through the respective cable glands into the interior of the housing.
\rightarrow Connect the wires to the connection terminals according to the connection configuration described in "Fig. 29". If required, secure the cable with a cable clip.

DANGER!

Risk of electric shock if the PE connection is not connected!

- the PE connection must be connected!
\rightarrow Clamp the protective conductor to the PE connection.
\rightarrow Check correct grounding.
\rightarrow Close the housing following the instructions in Chapter "8. Opening and Closing the Housing".

NOTE!

Ensure IP protection!

- To ensure IP protection, the union nuts of the cable glands must be tightened in accordance with the cable sizes or dummy plugs used (approx. 1.5 Nm).
- If no external initiator is used, the right connection opening must be sealed with a dummy plug!

NOTE!

Use of the control head in explosive atmosphere

- Only use cables and cable glands which are approved for the respective application area and fit the cable glands according to the respective operating instructions!
- Close all unnecessary openings with lock screws/plugs approved for explosions area!

120 V AC Electronics module, terminal strip configuration:

Fig. 29: 120 V AC electronics module

Designation Terminal strip	Configuration	
PE	Protection earth protective conductor	
L	Conductor Neutral conductor	Power
supply 120 V AC		
S1 OUT	Output position 1	
S2 OUT	Output position 2	
S3 OUT	Output position 3	
S4 OUT	External initiator output	
Y1	Solenoid valve 1 input	
Y2	Solenoid valve 2 input	
Y3	Solenoid valve 3 input	

Designation Terminal strip	Configuration for external initiator
L	Power supply - conductor
S4 IN	External initiator input
N	Power supply - neutral conductor

Circuit diagram 120 V AC:

Fig. 30: Circuit diagram 120 V AC

14. CONNECTION OF AN EXTERNAL INITIATOR

1 !

DANGER!

Danger of explosion in explosive atmosphere (only in the event of a fault as zone 2)!

- Opening the hood or the housing in an explosive atmosphere is only allowed in a not energized state!

An external initiator can be connected via the small 3-fold screw terminal - at bottom right on the respective electronics module (in the example: AS-i).
The control head is supplied with a dummy plug on the right connection which is intended for the external initiator.

To connect an external initiator, a cable gland (SW19, Ø 3-6 mm) with suitable clamping range is required.
Due to the size of the screw terminals, the wire cross-sections of the external initiator have the following values for the different designs:
0.14 ... $1.5 \mathrm{~mm}^{2} \quad$ for design: 24 V, AS-i, DeviceNet;
0.5 ... $1.5 \mathrm{~mm}^{2}$ for design: 120 V

Designation of the screw terminals on the different electronics modules:

Designation - according to design			Configuration
24 V DC, AS-i	DevNet	120 V AC	
24 V	V+	L	Power supply - according to design!
S4 IN	S4 IN	S4 IN	External initiator input
GND	GND	N	GND external initiator (24 V DC, AS-i, DevNet) or power supply (120 V AC design)

Electrical requirements of the external initiator for the different designs:

The electrical requirements of the external initiator can be found in the respective subchapters "Electrical data" under the headword "Input / proximity switch (external initiator: S4 in)":
Design 24 V: see Page 39
DeviceNet design
see Page 57
AS-i design: see Page 48
120 V design:
see Page 68

Connection procedure:

\rightarrow Open the housing following the instructions in Chapter "8. Opening and Closing the Housing".
\rightarrow Assemble the connection cables according to the general rules of technology.
\rightarrow Insert cables through the cable gland (connection on right) into the interior of the housing.
\rightarrow Connect the wires to the connection terminals according to the pin assignment.
\rightarrow Close the housing following the instructions in Chapter "8. Opening and Closing the Housing".

NOTE!

Ensure IP protection!

- To ensure IP protection, the union nuts of the cable glands must be tightened in accordance with the cable sizes or dummy plugs used (approx. 1.5 Nm).
- If no external initiator is used, the right connection opening must be sealed with a dummy plug!

Use of the control head in explosive atmosphere

- Only use cables and cable glands which are approved for the respective application area and fit the cable glands according to the respective operating instructions!
- Close all unnecessary openings with lock screws/plugs approved for explosions area!

Connection of a 2-wire initiator:

24 V DC, AS-i	DevNet	120 V AC

Connection of a 3-wire initiator:

24 V DC, AS-i	DevNet	120 V AC

15. DESIGN FOR DOUBLE-ACTING ACTUATORS

This control head has been configured for process valves actuated pneumatically (AA) on both sides. Of the two internal solenoid valves, one is designed for NC mode of operation and the other for NO mode of operation.

15.1. Anomalies

This design can be configured for all electrical designs.
This control head differs from IntelliTop 2.0 (standard) in the following points:

- Solenoid valve 1: NC / Normally Closed;

Solenoid valve 2: NO / Normally Open (as a result rest position)

- The flow rate from P to A 2 may be restricted to $50 \mathrm{I} / \mathrm{min}$ only, otherwise a reliable switchover (from A2 to R) cannot be guaranteed!
- only Autotune function 1 and 2 possible
- The setting "All valves can be actuated (simultaneously)" has no function.

15.2. Fluid diagram

See "Fig. 4: Fluid diagram (model for double-acting actuators: 2 solenoid valves, $\mathrm{NC}^{*}+\mathrm{NO}^{* *}$)" on page 17.

15.3. Electrical connection ($24 \mathrm{~V} / 120 \mathrm{~V}$ design)

To open or close the process valve, both solenoid valves V 1 and V 2 are switched simultaneously by the software. When a signal is applied to Y 1 , valves V 1 and V 2 are actuated simultaneously by software for the designs " 24 V " and "120 V".

Input valve control Y1	Solenoid valves
Y1 ON	V1 and V2 ON
Y1 OFF	V1 and V2 OFF

15.4. Programming data (AS-i design)

To open or close the process valve, both solenoid valves V 1 and V 2 are switched simultaneously by the software. In the case of design "AS-i" the solenoid valves V1 and V2 are switched ON simultaneously when data bit $\mathrm{DO}=1$ and both solenoid valves are switched OFF when $\mathrm{DO}=0$.

Data bit D0	Solenoid valves
D0 ON	V1 and V2 ON
D0 OFF	V1 and V2 OFF

Compare also Chapter "11.8. Programming data" on page 54 for the standard designs, "Bit configuration" table.

16. POSITION MEASURING SYSTEM

Operating principle of the position measuring system

The position measurement is based on recording the change in position of the ferromagnetic target inside the system. The geometry and the material of the target to be used are synchronized with the sensitivity of the system. The measurement precision is determined by the ferromagnetic properties of the target and all other parts in the system. Ideally materials are used which do not have any ferromagnetic properties.

The switching positions of the process valves are reported to the actuator by feedback signals from the solderless position measuring system. Connection to the control head is done by means of a simple adaptation to the process valve's piston.

Stroke range / feedback signals / teach-in function

The recordable stroke range is between 0 ... 85 mm .
3 discrete feedback signal are evaluated:

- Position 1 (discrete S1OUT signal)
- Position 2 (discrete S2OUT signal)
- Position 3 (discrete S3OUT signal)

3 Teach-In buttons have been provided for comparison with the actual stroke range (see Chapter "16.1. Setting the position measuring system (Teach-In)"). The switching positions for the position measuring system can be determined with these Teach-In buttons or by means of the PC software (connection via the Service interface on the electronics module).

A discrete, external feedback signal (standard proximity switch) can also be processed (S4IN, S4OUT).
-
If an explosive atmosphere is present the housing must not be opened when voltage is present!

©
For detailed description on electrical installation - see
Chapter "10. 24 V DC - Design" or
Chapter "11. AS Interface - Design" or
Chapter "12. DeviceNet Design" or
Chapter "13. 120 V AC Design".

16.1. Setting the position measuring system (Teach-In)
 DANGER!

Danger of explosion in explosive atmosphere (only in the event of a fault as zone 2)!

- Opening the hood or the housing in an explosive atmosphere is only allowed in a not energized state!

[^1]\rightarrow Depress the lower Teach-In button (T1) for approx. 1.5 seconds:
The LED corresponding to this position will flash quickly 3 times during the teaching phase.
When this position has been saved, the corresponding LED will remain continuously lit until the position of the piston is changed.
\rightarrow Afterwards, position the process valve at the upper switching position to be recorded.
\rightarrow Depress the upper Teach-In button (T2) for approx. 1.5 seconds:
The LED corresponding to this position will flash quickly 3 times during the teaching phase.
When this position has been saved, the corresponding LED will remain continuously lit until the position of the piston is changed.
\rightarrow The process valve can now be moved into a third, defined position.
\rightarrow Depress the middle Teach-In button (T3) for approx. 1.5 seconds:
The LED corresponding to this position will flash quickly 3 times during the teaching phase.
When this position has been saved, the corresponding LED will flash continuously until the position of the piston is changed.
\rightarrow If required, return control head and system to normal state (switching position, power supply).
\rightarrow Close the housing following the instructions in Chapter "8. Opening and Closing the Housing".
(1)

If the piston or the target are located outside the measuring area during the teaching phase, LED 3 will flash in the defined fault color.

- If the piston or target are outside of the measuring area, no positions signals will report back, i.e. no LEDs will be lit.
- The Teach-In buttons can be assigned to any of the positions of the piston, i.e. T1 does not have to correspond to the lower piston position, etc.

Fig. 31: Teach-In buttons on the electronics modules (in the example of the electronics modules for 24 VDC and AS-i)

16.2. Teach-In functions

16.2.1. Teach-In functions and Teach-In reset

Teach-In button	Function	Activation duration	Optical feedback
T1	Teach function S1	1.5 s	S1 blinks quickly three times, then continuously in the encoded color
T2	Teach function S2	1.5 s	S2 blinks quickly three times, then continuously in the encoded color
T3	Teach function S3	1.5 s	S3 blinks quickly three times, then slowly in the encoded color
T1 + T2	Teach-In reset S1, S2, and S3	2.5 s	Blinks in the fault color

Difference between the different "flashing patterns" - see Chapter "17.2. Blinking pattern \& fault signaling".

16.2.2. Autotune functions

Teach-In button	Mode	Activation duration	Opt. feedback	Teach-In button	Function	Activation duration	Opt. feedback
T2 + T3	Autotune mode	2.5 s	green + yellow + red continuously ON	T1	Autotune 1	0.5 s	green + yellow + red chaser mode
				T2	Autotune 2		
				T3	Autotune 3		
				T1 + T2	Autotune 4		
				T1 + T3	Autotune 5		
				T2 + T3	Autotune 6		

The Autotune function can be selected after changing to Autotune mode. If an Autotune function has not been started 10 seconds after the change to Autotune mode, that mode will be exited.

!
If an Autotune function does not run properly or is aborted (if e.g. no compressed air is connected), the positions already taught are deleted again, the corresponding Autotune function is left and switched to normal operation. The Teach positions are set to "not taught", i.e. they flash in the fault color.
!) In the case of the design for double-acting actuators (solenoid valves NC+NO) only Autotune functions 1 and 2 are possible (compare Chapter "15.1" on page 76).

16.2.3. Autotune sequence

Autotune 1:

Single seat valves NC,
Butterfly valves NC,
Double seat valves without liftable lower valve disc

Control	Effect on the process valve	Internal program		Error
T2 + T3	Autotune mode starts			
T1	Autotune 1 starts			
	Closed position	Teach	T1	
	Valve opening	Activate	V1	
		Wait period	10s	
	Open position	Teach	T2	
	Valve closing	Deactivate	V 1	
Autotune mode completed	Valve closes	Wait on position S1	S 1	Timeout 15s

Autotune 2:

Single seat valve NO
Butterfly valves NO

Control	Effect on the process valve	Internal program		Error
T2 + T3	Autotune mode starts			
T2	Autotune 2 starts			
	Open position	Teach	T2	
	Valve closing	Activate	V1	
		Wait period	10 s	
	Closed position	Teach	T 1	
	Valve opening	Deactivate	V 1	
Autotune mode completed	Valve opens	Wait on position S2	S 2	Timeout 15s

Autotune 3:

Double seat valves with liftable lower valve disc

Control	Effect on the process valve	Internal program		Error
T2 + T3	Autotune mode starts			
T3	Autotune 3 starts			
	Closed position	Teach	T1	
	Valve opening	Activate	V1	
	Open position	Wait period	10s	
	Valve closing	Deach	T2	
	Valve closes	Wait on position S1	V 1	S1
	Activate	V 2	Timeout 15s	
	Open lower lift function	Wait period	10 s	
	Lower lift function	Deactivate	V 2	
Autotune mode completed	Valve closing	Valve closes		S 1

Autotune 4:

Single seat valves AA,
Butterfly valves AA

Control	Effect on the process valve	Internal program		Error
T2 + T3	Autotune mode starts			
$\mathrm{T} 1+\mathrm{T} 2$	Autotune 4 starts		V 2	
	Valve closing	Activate		
		Wait period	10 s	
	Closed position	Teach	T 1	
	Valve opening	Deactivate	V 2	
		Activate	V 1	
	Wait period	10 s		
	Open position	Teach	T 2	
	Valve closing	Activate	V 1	
	Valve closes	Wait on position S1	S 1	
Autotune mode completed	Neutral position	Deactivate	V 2	Timeout 15s

Autotune 5:

Single seat valves NC with 3-position actuator, Butterfly valves NC with 3-position actuator

Control	Effect on the process valve	Internal program		Error
T2 + T3	Autotune mode starts			
T1 + T3	Autotune 5 starts			
	Closed position	Teach	T1	
	Valve opening	Activate	V1	
		Wait period	10s	
	Open position	Teach	T2	
	Valve closing	Deactivate	V1	
	Valve closes	Wait on position S1	S1	Timeout 15s
	Intermediate position opening	Activate	V2	
		Wait period	10s	
	Intermediate position	Teach	T3	
	Valve closing	Deactivate	V2	
	Valve closes	Wait on position S1	S1	Timeout 15s
Autotune mode completed				

Autotune 6:

PMO double seat valves with liftable lower valve disc
Autotune 6 is identical to Autotune 3, but with feedback fields for S 1 changed in comparison to the factory settings (see Chapter "6.8" on page 26): S1 $\pm 1.0 \mathrm{~mm}$.
The feedback fields are already switched during the Autotune process. However, if the Autotune-6 process is aborted (e.g. power failure) or is not successful, the feedback fields set previously are accepted again.

After a successful Autotune 6, the (magnetic) manual control function is deactivated.
These settings made by Autotune 6 can be changed if required as follows:

- The magnetic manual control function can be re-activated using PC software or via DeviceNet only.
- The feedback fields changed by the Autotune function 6 can be changed to the original or another value using PC software or DeviceNet or by Feedback Field Mode (see Chapter "16.3" on page 83).
- A Device Reset will also reset all settings made by the Autotune function 6 (comp. Chapter "6.9. Resetting the device (Device Reset)" on page 28).

Control	Effect on the process valve	Internal program		Error
T2 + T3	Autotune mode starts			
T2+T3	Autotune 6 starts			
	Closed position	Teach	T1	
	Valve opening	Activate	V1	
		Wait period	10s	
	Open position	Teach	T2	
	Valve closing	Deactivate	V1	
	Valve closes	Wait on position S1	S1	Timeout 15s
	Open lower lift function	Activate	V2	
		Wait period	10s	
	Lower lift function	Teach	T3	
	Valve closing	Deactivate	V2	
	Valve closes	Wait on position S1	S1	Timeout 15s
Autotune mode completed		- feedback fields for $\mathbf{S 1}: \pm 1$ - feedback fields for S2 and S2 and S3 to factory settin S3: $\pm 1.0 \mathrm{~mm}$ - see FFM3 - magnetic manual control:		

©
In the event that a timeout occurs, the corresponding Autotune function will be exited and switched to normal operation.
Furthermore, the Teach positions are set to "not taught", i.e. they flash in the fault color.

16.3. Changing the feedback field - Feedback Field Mode (FFM)

The size of the feedback fields for sensor positions S1 to S3 can be changed - either using the PC software or using the "Feedback Field Mode".

Procedure:

\rightarrow Open the housing following the instructions in Chapter "8. Opening and Closing the Housing".
\rightarrow Supply electrical power so that the position measuring system and the LED display can function.
\rightarrow Press down the teach-in buttons T1 and T3 simultaneously for approx. 2.5 s :
Flashing pattern for optical confirmation of this mode: 500 ms ON, 500 ms OFF (LED green+yellow+red)
(more blinking patterns in Chapter "17.2. Blinking pattern \& fault signaling")

Teach-In button	Mode	Activation duration	Optical feedback
T1 + T3	Feedback Field Mode	2.5 s	green + yellow + red $500 \mathrm{~ms} \mathrm{ON} / 500 \mathrm{~ms}$ OFF

\rightarrow To select certain settings for the feedback fields, press one of the Teach buttons for 3 s according to the table below:
the successful change of the feedback field for the three sensor positions is displayed by the following flashing pattern: 3 s ON, 3 s OFF of one of the LEDs according to the table below

FFM no.	Teach-In button	Optical feedback by LED	Feedback field S1 [mm]	$\begin{gathered} \text { Feedback } \\ \text { field } \\ \text { S2 }[\mathrm{mm}] \\ \hline \end{gathered}$	$\begin{aligned} & \text { Feedback } \\ & \text { field } \\ & \text { S3 }[\mathrm{mm}] \\ & \hline \end{aligned}$
FFM 1	T1	red: 3 s ON / 3 s OFF	+/-1.00	+/-3.00	+/-0.5
FFM 2	T2	green: 3 s ON / 3 s OFF	+/-5.00	+/-3.00	+/-1.00
FFM 3*)	T3 *)	yellow: 3 s ON / 3 s OFF	+/-3.00	+/-3.00	+/-1.00
FFM 4	T1 + T2	green + red: 3 s ON / 3 s OFF	+3.00/-12.00	+/-3.00	+/-1.00

*) FFM 3 or T3 corresponds to the factory setting or the delivery status
\rightarrow The new feedback field is now active and the device will automatically switch back to normal operation.
!
If no button is pressed for 10 s after activation of the "Feedback Field Mode", the device will automatically exit this mode and switch back to normal operation.

With the commands DeviceReset and FactoryReset, the feedback fields are reset to the factory settings (see FFM 3).

17. LED - COLOR ASSIGNMENTS

The switching states of the feedback positions are signaled centrally to the outside by super-bright LEDs so that quick visual control is possible also for large systems.

The color assignments for all signals to the process valve states corresponds to the subsequently listed tables.
To be able to respond in the systems to the different process valve designs and signaling philosophies of the customers, the assignment of functions to the available colors can be configured individually by means of the 4 DIP-switches on site.
(Delivered state DIP 1-4: each set to position 0)
$!$
When using the control head in explosive atmosphere, the housing may be opened in a not energized state only!

Fig. 32: DIP switches for setting the color coding (in the example of the electronics modules for 24 V DC and AS-i)

17.1. Setting the color combinations

17.1.1. Setting of possible color combinations (classic)

The color combinations will be set via the 4 color DIP switches (see "Fig. 32") after following scheme:

S1	S2	S3	$\mathbf{S 4}^{*}$)	Fault	DIP1	DIP2	DIP3	DIP4
green	yellow	green		red	0	0	0	0
yellow	green	yellow		red	1	0	0	0
green	red	green		yellow	0	1	0	0
red	green	red		yellow	1	1	0	0
green	yellow	yellow		red	0	0	1	0
yellow	green	green		red	1	0	1	0
green	red	red		yellow	0	1	1	0
red	green	green		yellow	1	1	1	0
green	yellow	green	green	red	0	0	0	1
yellow	green	yellow	yellow	red	1	0	0	1
green	red	green	green	yellow	0	1	0	1
red	green	red	red	yellow	1	1	0	1
green	yellow	yellow	yellow	red	0	0	1	1
yellow	green	green	green	red	1	0	1	1
green	red	red	red	yellow	0	1	1	1
red	green	green	green	yellow	1	1	1	1

*) Color of S4 as S3 if function "cycle stroke color S3/S4 different" is not active
S4IN is always an open contact.
Delivered state DIP 1-4: each set to position 0

17.1.2. Color combinations with active function „cycle stroke color S3/S4 different"

The function "cycle stroke color S3/S4 different" can be only (de-)activated via PC software. When the function is active, position S4 flashes in another color as position S3, but with the same blinking pattern (250 ms ON, 250 ms OFF):

S1	S2	S3	S4	Fault	DIP1	DIP2	DIP3	DIP4
green	yellow	green	yellow	red	0	0	0	1
yellow	green	yellow	green	red	1	0	0	1
green	red	green	red	yellow	0	1	0	1
red	green	red	green	yellow	1	1	0	1
green	yellow	yellow	green	red	0	0	1	1
yellow	green	green	yellow	red	1	0	1	1
green	red	red	green	yellow	0	1	1	1
red	green	green	red	yellow	1	1	1	1

17.2. Blinking pattern \& fault signaling

The LEDs flash in different "flashing patterns" in the event of a fault or in various states:

Blinking patterns	ON	OFF	Note
\square	100 ms	100 ms	Flashes three times in the corresponding color for that position: Teach-In confirmation (after successful teaching: the color for position 1 and 2 is continuously on) Flashes three times in the corresponding fault color: - if target is not in the measuring range during teaching or - if teach position is too close ($\pm 0.5 \mathrm{~mm}$) to a previously defined teach position or - if magnetic manual control is used, even though manual control function was disabled by software
	250 ms	250 ms	permanent flashing in the fault color: - Teaching does not occur or - Teach Reset implemented - bus error - Device Reset implemented permanent flashing in the color for that position: Signal from position 3 (also signal of the external initiator S 4 if the function "cycle stroke color S3/S4 different" is active)
$\sqrt{ }$	450 ms	50 ms	Internal Fault (fault color)
\checkmark,	50 ms	450 ms	Service mode / manual operating mode active (fault color)
\checkmark -	500 ms	500 ms	Feedback Field Mode active (all 3 colors simultaneously for 10 s)
¢ぃぃ	125 ms	125 ms	Signal from the external initiator S4 (same as "color for position 3" if the function "cycle stroke color S3/S4 different" is not active)
	1 s	3 s	Signal in fault color (and additionally color of the corresponding valve position): Service/maintenance notification required
I	3 s	3 s	Feedback Field Mode - change of the feedback fields completed successfully (T3-yellow, T2 - green, T1 - red)

17.3. Signal priorities

If a valve has several overlapping states, the following priority list applies:

1. Internal Fault (fault color: $450 \mathrm{~ms} \mathrm{ON}, 50 \mathrm{~ms}$ OFF)
2. Manual operating mode is active, e.g. by magnetic manual control - see Chapter "18. Service Mode / Manual Control" (fault color: 50 ms ON, 450 ms OFF)
3. Service/maintenance notification or request (fault color: 1 s ON, 3 s OFF)
4. Other fault, e.g. position measuring system not taught, bus error or other (see Chapter "17.2. Blinking pattern \& fault signaling")

If position feedback signals overlap the following priorities apply:
Only the fields / colors highlighted in gray in the 3 examples below are reported back by LED display, regardless of whether a signal is present (1) or no signal is present (0).
This means only the optical display (LEDs) for the positions (S1 ... 4) is subject to the priority control, whereas the electrical signals are applied to the output (may also be several outputs simultaneously) according to the position of the process valve.

Example 1: Position of the DIP switches (color combination): 0000

S1	S2	S3	S4	Fault
green	yellow	flashing green $(250 \mathrm{~ms} / 250 \mathrm{~ms})$	-	red
$\mathbf{S 1}$	$\mathbf{S 2}$	$\mathbf{S 3}$	$\mathbf{S 4}$	Fault
0	0	0	-	
1	0	0	-	
0	1	0	-	
0	0	1	-	
1	0	1	-	
0	1	1	0	-

Example 2: Position of the DIP switches (color combination): 0001

(The external S4 initiator monitors whether the upper valve disc has been closed,
the valve is only considered safely closed if S 1 and $\mathrm{S} 4=1$;
the function "cycle stroke color S3/S4 different" is not active)

S1	S2	S3	S4	Fault
green	yellow	flashing green ($250 \mathrm{~ms} / 250 \mathrm{~ms}$)	flashing green $(125 \mathrm{~ms} / 125 \mathrm{~ms})$	red
S1	S2	S3	S4	Fault
0	0	0	1	
1	0	0	1	
0	1	0	1	
0	0	1	1	
0	0	0	0	
1	0	0	0	
1	0	1	1	
0	1	0	0	
0	1	1	0	
0	1	1	1	
1	1	0	1	
1	1	0	0	
1	0	1	0	
0	0	1	0	
1	1	1	1	
1	1	1	0	

Example 3: Position of the DIP switches (color combination): 0001 (Logic S4 -> Changeover via the Service interface required)

(The external S 4 initiator monitors whether the upper valve disc has been opened, the function „cycle stroke color S3/S4 different" is not active)

S1	S2	S3	S4	Fault
green	yellow	flashing green ($250 \mathrm{~ms} / 250 \mathrm{~ms}$)	flashing green ($125 \mathrm{~ms} / 125 \mathrm{~ms}$)	red
S1	S2	S3	S4	Fault
0	0	0	0	
1	0	0	0	
0	1	0	0	
0	0	1	0	
0	0	0	1	
1	0	0	1	
1	0	1	0	
0	1	0	1	
0	1	1	1	
0	1	1	0	
1	1	0	0	
1	1	0	1	
1	0	1	1	
0	0	1	1	
1	1	1	0	
1	1	1	1	

18. SERVICE MODE / MANUAL CONTROL

By default, the control head provides the following (e.g. for service purposes):

- a magnetic manual control which is easily accessible from the outside for Solenoid Valve 1 (2/A1) ") as well as
- a mechanical manual control accessible when the hood is open on each equipped solenoid valve.

18.1. Magnetic manual control

Fig. 33: Manual control on the basis of encoded magnetic fields
Activation/deactivation is possible using PC software. Connection to the PC is via the Service interface. Details are described in the "PC software" manual under the "SYSTEM / Start-up" menu option.

Irrespective of the signal of the higher-level control, the magnetic manual control sets the output of Solenoid Valve 1^{*}) electrically to an ON signal and, if control pressure is present, switches the 2/A1 output *).

(1)However, if the output of solenoid valve 1^{*}) is activated by the control (ON signal), this switching state cannot be set to an OFF signal with the manual control!

Caution!

When the magnetic manual control (Solenoid Valve $1^{*)}$) is activated:

- the peripheral fault bit is set for the AS interface design.
- The mode is switched to "Manual control active" for the DeviceNet design and can be read out.
- The feedback signals (positions 1-3, external initiator) function as per normal operation.

Always observe the safety guidelines and the system states!

[^2]The activation of the manual control is signaled by an illuminated LED display in the fault color: "Flashing patterns": 50 ms ON, 450 ms OFF.
The "flashing pattern" 100 ms ON, 100 ms OFF (3x) in the fault color signals that the manual control function was disabled by PC software - the magnetic manual control does not function in this case!
(see Chapter "17.2. Blinking pattern \& fault signaling")

Procedure for activating \& deactivating the manual control for valve location 2/A1:

\rightarrow Observe safety guidelines for the system prior to using the manual control.
\rightarrow Activating the magnetic manual control:
Hold the manual control tool on the identification points between the cable glands for 3 seconds (see "Fig. 33") ("flashing pattern" in fault color $=50 \mathrm{~ms}$ ON, 450 ms OFF - active manual control;
"flashing pattern" in fault color $=100 \mathrm{~ms}$ ON, 100 ms OFF (3 x) - manual control function disabled by the software).
\rightarrow Once the measure has been completed, deactivate the magnetic manual control:
Hold the manual control tool on the identification points between the cable glands for another three seconds (see "Fig. 33").

After a power failure the magnetic manual control is reset and the control head restarts in standard operating mode, i.e. the signal of the higher-level control is accepted.

18.2. Mechanical manual control

If additional manual controls are required for additional service purposes or in the event of a failure of the electrical energy, it is possible for all voltage and communication designs to switch the connected process valve using the mechanical manual control of the solenoid valves after opening the housing.

!

DANGER!

Danger of explosion in explosive atmosphere (only in the event of a fault as zone 2)!

- Opening the hood or the housing in an explosive atmosphere is only allowed in a not energized state!

Fig. 34: Mechanical manual control of the solenoid valves

When the service measures have been completed, reset all manual controls to " 0 " for controlled operation of the system!

19. MAINTENANCE, TROUBLESHOOTING

19.1. Safety instructions

DANGER!
Risk of injury from high pressure in the system!

- Before loosening lines and valves, turn off the pressure and vent the lines.

Danger of explosion in explosive atmosphere (only in the event of a fault as zone 2)!

- Opening the hood or the housing in an explosive atmosphere is only allowed in a not energized state!

!

WARNING!

Risk of injury due to electric shock!

- Before reaching into the system (except for the Teach-In procedure in a non-explosive atmosphere) switch off the power supply and secure it to prevent restarting!
- Observe applicable accident prevention and safety regulations for electrical equipment!

Risk of injury from improper maintenance!

- Maintenance may be carried out by authorized technicians only and with the appropriate tools!

Risk of injury from unintentional activation of the system and uncontrolled restart!

- Secure system against unintentional activation.
- Following maintenance, ensure a controlled restart.

19.2. Safety positions

Safety positions after failure of the electrical or pneumatic auxiliary power:

Operating mode	Process valve design	Safety positions after failure of the auxiliary power	
		electrical	pneumatic
	single-acting Control function A (NC) - air opening - spring closing	down	down
	single-acting Control function B (NO) - air closing - spring opening	up	up
	double-acting Control function I - air opening - air closing	not defined for both solenoid valves NC, but defined for Solenoid valve 1 NC + Solenoid valve 2 NO	not defined

By default the control head is equipped with solenoid valves which operate in NC mode, the model for double-acting actuators is equipped with 1 solenoid valve NC and 1 solenoid valve NO.

If process valves with several switching positions (e.g. double seat valves) are connected, the safety positions of the individual actuators can be viewed according to the same logic as for a classical single seat valve.

Safety positions after failure of the bus communication:

AS interface:

If the Watchdog is activated (default), behavior is the same as a failure of the auxiliary electrical power, i.e. all solenoid valve outputs are set to " 0 ".

DeviceNet:

See chapter "12.12.1. Configuration of the safety position of solenoid valves if bus error".

19.3. Maintenance / service

When used properly, the control head IntelliTop 2.0 operates maintenance- and trouble-free.
For service work, we offer spare part sets for certain components or modules (see chapter entitled "21. Spare Parts" on page 102). However, only the manufacturer may repair the control head for use in explosive atmosphere.

For active Service/maintenance notification function (see Chapter"6.8. Factory settings in the firmware" on page 26) a maintenance prompt is issued - signaled by a "flashing pattern" in the fault color (1 s ON, 3 s OFF) - see Chapter "17.2. Blinking pattern \& fault signaling" on page 86.

19.4. Cleaning

NOTE!

Aggressive cleaning agents may damage the material!

- In the explosion-risk area, only wipe the control head with a damp or anti-static cloth to avoid electro-static charges.
- The customary cleaning agents and foam cleaners can be used to clean the outside. We recommend checking that the cleaning agents are compatible with the housing materials and seals before using the cleaning agent.
\rightarrow Clean the control head and rinse it thoroughly with clean water to safeguard against the formation of deposits in grooves and recesses.

If cleaning agent is not rinsed off properly, its concentration may considerably exceed the concentration for use when the water has evaporated. The chemical effect will thus be several times stronger!

Observe the specifications of the manufacturer and the recommendations for use of the cleaning agent manufacturer!

19.5. Malfunctions

In the event of any malfunctions in spite of a correct installation, proceed according to the fault analysis described in the table below:

Fault description	Possible cause of the fault	Troubleshooting
No feedback signal	Position of the position measuring system (Teach-In) not appropriate for the spindle position	Perform/repeat the Teach-In procedure (see Chapter "16.1. Setting the position measuring system (Teach-In)")
	Setting of the external initiators incorrect	Set the external initiator according to the respective operating instructions.
	No or faulty associated feedback signals or external initiator	Set the connections according to the pin and plug configurations described in these operating instructions (for the respective voltage and communication variant).
	Target is not mounted on the process valve's spindle or target faulty	Check the target for correct mounting and condition (see Chapter ("6.7. Position measuring system data")).

Fault description	Possible cause of the fault	Troubleshooting
Feedback signal is "lost" in system operation	Position in the limit range of the feedback field	Repeat the Teach-In procedure (see Chapter "16.1. Setting the position measuring system (Teach-In)")
		Check the process valve end positions during operation against the end positions in non-operative state of the system.
		Check the pressure supply.
Valve output 2/A1 cannot be switched off with the control	Magnetic manual control is still activated	Deactivate the manual control. Compare Chapter "18.1. Magnetic manual control"
Valve outputs cannot be switched off by the control	Mechanical manual control at the solenoid valve is still activated	Deactivate the mechanical manual controls on the solenoid valves Compare Chapter "18.2. Mechanical manual control" on page 91
Faults are signaled by means of LEDs	Possible causes may vary depending on the version	Please read the corresponding descriptions of the respective communication variant in these operating instructions. (compare Chap. "17.2. Blinking pattern \& fault signaling" on page 86)
No or faulty function of the process valves	No electrical power supply or communication for the control head	Check the power supply and the communication settings (also refer to detailed descriptions of the respective versions in these operating instructions)
	No or insufficient pneumatic supply of the control head	Check the pressure supply and ensure that supply is sufficient
Incorrect function of the process valves	Confused pneumatic connection lines	Check the correct pneumatic connection of the control head to the process valve (for fluid diagrams see chapter "5.3.2. Structure of the control head (feedback top)" and the operating instructions of the corresponding process valves)
	Valves not correctly connected on electronics module	Check the correct electrical connection of the solenoid valves comp. "Fig. 15: 24 V DC electronics module"

In the event of any undefined faults, be sure to contact the service department of Pentair Südmo GmbH! Contact: Email: info@suedmo.de Telephone: +49(0)9081/803-0

20. REPLACEMENT OF COMPONENTS AND MODULES

If components or modules need to be replaced for maintenance or service reasons, please observe the following notes and descriptions.

20.1. Safety instructions

!
 DANGER!

Risk of injury from high pressure!

- Before loosening lines and valves, turn off the pressure and vent the lines.

Danger of explosion in explosive atmosphere (only in the event of a fault as zone 2)!

- Opening the hood or the housing in an explosive atmosphere is only allowed in a not energized state!

WARNING!

Risk of injury due to electric shock!

- Before reaching into the system (except for the Teach-In procedure in a non-explosive atmosphere) switch off the power supply and secure it to prevent restarting!
- Observe applicable accident prevention and safety regulations for electrical equipment!

Risk of injury due to improper maintenance work!

- Maintenance work may be carried out by authorized technicians only and with the appropriate tools!

Risk of injury from unintentional activation of the system and uncontrolled restart!

- Secure system against unintentional activation.
- Following maintenance, ensure a controlled restart.

NOTE!

IP65 / IP67 / IP69K protection

- During all work steps, ensure that IP65 / IP67 / IP69K protection is once again ensured for the control head when used as intended!

Opening and closing the control head

- During all work which requires opening and closing of the control head, also observe the notes and comments in Chapter "8. Opening and Closing the Housing"!

20.2. Changing the electronics module

NOTE!

Electrostatic sensitive components/modules!

- The device contains electronic components which react sensitively to electrostatic discharge (ESD). Contact with electrostatically charged persons or objects may be hazardous to these components. In the worst case scenario, they will be destroyed immediately or will fail after start-up.
- Observe the requirements in accordance with DIN EN 61340-5-1 to minimize or avoid the possibility of damage caused by sudden electrostatic discharge!
- Also ensure that you do not touch electronic components when the supply voltage is on!

Removal procedure:

\rightarrow Open the housing following the instructions in Chapter "8. Opening and Closing the Housing".
\rightarrow If necessary, mark the electrical connections to ensure correct assignment during reinstallation!
\rightarrow If required, note the position of the DIP switches for the set color code and the DIP switches (8-switch block) on the DeviceNet electronics module for baud rate and address. On the AS-i electronics module, note the AS interface address and the jumper positions (power supply to AS interface).
\rightarrow If required, read out and note special settings by PC software.
\rightarrow Loosen all electrical connections on the electronics module (plug-type connections, screw-type terminal connections).
\rightarrow Loosen the screw-type connection (Torx T10 screw) of the electronics module and store the screw in a safe place.
\rightarrow Carefully press the electronics module forwards so that the contact pins on the position measuring system are exposed.

Fig. 35: Electronics module (here example of AS interface)
\rightarrow Carefully lift the electronics module upwards.

Installation procedure:

\rightarrow Carefully insert the entire electronics module into the recess in the lower housing part.
\rightarrow Plug the electronics module carefully onto the contact pins for the position measuring system.
\rightarrow Refasten the electronics module with the Torx T10 screw (torque 0.4 Nm).
\rightarrow Reattach the electrical connections.
\rightarrow Check DIP switch positions (4-switch block for color coding, 8-switch block on DeviceNet electronics module for address and Baud rate) and set the previously noted switch settings, if necessary.
\rightarrow If necessary, set AS interface address and jumper positions.
\rightarrow If required, make settings again, read out by PC software, using PC software.
\rightarrow Perform Teach-In procedure (see Chapter "16.1. Setting the position measuring system (Teach-In)").

!Be sure to work carefully and cautiously, so that the electronics are not damaged.
\rightarrow Close the housing following the instructions in Chapter "8. Opening and Closing the Housing".

20.3. Changing the valves

According to the design, 0 to 3 valve modules have been installed in the control head. The valves have been designed with the flow restriction equipment for intake and exhaust air and must be installed as a valve module.

Note:
Disassemble/assemble the valves in upright position, otherwise there is a risk that the non-return valve will fall out!

> Valve module from above

Flow restriction screws

Torx screws (T10), tightening torque: 1 Nm

Fig. 36: Valve module

Procedure:

[^3]\rightarrow If necessary, mark the electrical connections to ensure correct assignment during reinstallation.
\rightarrow Loosen the electrical connections.
\rightarrow Loosen the connecting screws (Torx T10) for the corresponding valve module.
\rightarrow Take out the valve module and replace it with the spare part set.
\rightarrow When inserting the valve module, make sure that the form seal fits correctly and fully on the lower side of the respective valve flange!
\rightarrow Valve module: to do this, insert the screws (Torx T10) into the existing threading by turning them backwards and tighten them to a torque of 1.2 Nm .
\rightarrow Reattach the electrical connections.
(If other connections, apart from the solenoid valve connections, have been removed, read the corresponding chapters on the electrical installation of the respective voltage / bus / connection version)
\rightarrow Close the housing following the instructions in Chapter "8. Opening and Closing the Housing".

20.4. Changing the position measuring system

The position measuring system consists of a housing, with a PCB mounted above with LEDs and light conductor. There are 4 snap-fit hooks, which secure the position measuring system in the lower housing part, by snapping them into place.

Fig. 37: Position measuring system

DANGER!

Risk of injury from high pressure!

- Before loosening lines and valves, turn off the pressure and vent the lines.

NOTE!

Electrostatic sensitive components/modules!

- Before changing the position measuring system, switch the electrical power for the control head off so that destruction of the PCB and electronics module is avoided.
- The device contains electronic components which react sensitively to electrostatic discharge (ESD). Contact with electrostatically charged persons or objects may be hazardous to these components. In the worst case scenario, they will be destroyed immediately or will fail after start-up.
- Observe the requirements in accordance with DIN EN 61340-5-1 to minimize or avoid the possibility of damage caused by sudden electrostatic discharge!
- Also ensure that you do not touch electronic components when the supply voltage is on!

Deinstallation procedure:

\rightarrow Switch the electrical power to the control head off!
\rightarrow Loosen the control head from the process valve.
\rightarrow Open the housing following the instructions in Chapter "8. Opening and Closing the Housing".

Fig. 38: \quad Dismantling the position measuring system
\rightarrow Loosen the fastening screw (Torx 10) of the electronics module (see Chapter "20.2. Changing the electronics module")
\rightarrow Tilt the electronics forwards to loosen the position measuring system's contact pins from the electronics module.
\rightarrow Bend the snap-fit hooks on the bottom end of the position measuring system inwards. In some cases, break them off.
\rightarrow Pull the position measuring system upwards out of the guide.

Installation procedure:

\rightarrow Insert the new position measuring system from above so that the contact pins are located on the side of the electronics module.
\rightarrow Carefully push the housing of the position measuring system downwards until the snap-fit hooks snap into place.
\rightarrow Slide the electronics module carefully onto the contacts pins and fasten the electronics module using the Torx screw.
\rightarrow Remount the control head on the process valve as described in Chapter "7. Installation".
\rightarrow Adjust position measuring system to the process valve by teaching (see Chapter "16.1. Setting the position measuring system (Teach-In)")
\rightarrow Close the housing following the instructions in Chapter "8. Opening and Closing the Housing".

21. SPARE PARTS

CAUTION:

Risk of injury and/or damage by the use of incorrect parts!
Incorrect accessories and unsuitable spare parts may cause injuries and damage the device and the surrounding area.

- Use only original accessories and original spare parts from Pentair Südmo.

Item No.	Spare parts	ID No.
1	O-ring for hood (not for devices with FM approval*))	2307266
2	Electronics module, 24 V DC	2307255
2	Electronics module, AS interface / 2.11	2307256
2	Electronics module, DeviceNet	2307257
2	Electronics module, 120 V AC	2307258
3	Solenoid valve module incl. flow restrictor module	2307252
4	Position measuring system with light conductor	2307254
5	Light conductor	2307253
(6)	Cable with 12-pole plug M12 (IEC 61076-2-101), approx. 10 cm (24 V DC)	2307261
(6)	Cable with 4-pole plug M12 (IEC 61076-2-101), approx. 10 cm (AS interface)	2307263
(6)	Cable with 4-pole plug M12 (IEC 61076-2-101), approx. 80 cm (AS interface)	2307262
(6)	Cable with 5-pole plug M12 (IEC 61076-2-101), approx. 80 cm (DeviceNet)	2307264
7	Cable gland M16 Ø 2-6 mm (possibly instead of dummy plug)	2307259
8	Cable gland M16 Ø 5-10 mm	2307260
9	Silencer	2307267
(10)	Hood, coated, with Pentair logo	2307265
11	Locking screw set (consisting of 2 x screws and 2 x nuts)	2307268
(12)	Ribbon cable terminal for AS interface cable	2024610
(13)	Paraliq GTE 703 - 2 g bag	2155156
	G1/8 angular quick fitting gland for 6 mm hose	2116513 **)
	G1/8 angular quick fitting gland for 6.35 mm hose (1/4")	2101513
	G1/4 angular quick fitting gland for 8 mm hose (5/16")	2344384 **)
	G1/4 angular quick fitting gland for 6.35 mm hose (1/4")	2125116
	G1/4 angular quick fitting gland for 6 mm hose	2116845

22. SHUTDOWN

22.1. Safety instructions

1 DANGER!

Risk of injury from high pressure!

- Before loosening lines and valves, turn off the pressure and vent the lines.

Danger of explosion in explosive atmosphere (only in the event of a fault as zone 2)!

- Opening the hood or the housing in an explosive atmosphere is only allowed in a not energized state!

WARNING!
 Risk of injury due to electric shock!

- Before reaching into the system (except for the Teach-In procedure) switch off the power supply and secure it to prevent reactivation!
- Observe applicable accident prevention and safety regulations for electrical equipment!

Risk of injury due to improper disassembly!

- Disassembly work may be carried out by authorized technicians only and with the appropriate tools!

22.2. Dismantling the control head IntelliTop 2.0

! Prior to starting with the work, check the system status!

Procedure:

Cable gland versions:
\rightarrow Open the housing following the instructions in Chapter "8. Opening and Closing the Housing".
\rightarrow Uninstall the electrical connections at the terminal strip.
\rightarrow Close the housing following the instructions in Chapter "8. Opening and Closing the Housing".
\rightarrow Loosen the pneumatic connections (for a detailed description, see Chapter "9. Pneumatic Installation").
\rightarrow Loosen the locking screws (shoulder screws M5).
\rightarrow Pull control head upwards and off the adaptation.

Multi-pole connection versions:
\rightarrow Remove the multi-pole plugs.
\rightarrow Loosen the pneumatic connections (for a detailed description, see Chapter "9. Pneumatic Installation").
\rightarrow Loosen the locking screws (shoulder screws M5).
\rightarrow Pull control head upwards and off the adaptation.

23. PACKAGING AND TRANSPORT

NOTE!

Transport damage!

Inadequately protected devices may be damaged during transportation.

- During transportation protect the device against moisture and dirt in shock-resistant packaging.
- Avoid the effects of heat and cold which could result in temperatures above or below the permitted storage temperature.

Approved non-return and reusable transport containers are used for the transport ex factory and storage of the control head. Preferably use this packaging.

If the control head is stored for further pre-assembly of a system, for example as part of a process valve module, kindly make sure:
\rightarrow that the control head has been secured sufficiently!
\rightarrow that the electrical and pneumatic lines cannot be accidentally damaged and / or cannot indirectly damage the control head
\rightarrow that the control head is not used as support during packaging and transport!
\rightarrow that the control head is not exposed to any mechanical stress!

24. STORAGE

NOTE!

Incorrect storage may damage the device.

- Store the device in a dry and dust-free location!
- Storage temperature: $-20 \ldots+65^{\circ} \mathrm{C}$

Kindly make sure that the devices, following storage at low temperatures, are heated slowly to room temperature before you carry out any assembly work on the devices or start operation of the devices!

25. DISPOSAL

\rightarrow Dispose of the device and packaging in an environmentally friendly manner.

NOTE!

Damage to the environment caused by device components contaminated with media.

- Observe the relevant disposal and environmental protection regulations.

Note:
Observe the national waste disposal regulations

[^0]: * $\quad N C=3 / 2$-way valve; closed in rest position, output A relieved
 ** $\quad N O=3 / 2$-way valve; opened in rest position, output A pressurized

[^1]: Example procedure (for 3 valve positions):
 \rightarrow Open the housing following the instructions in Chapter "8. Opening and Closing the Housing".
 \rightarrow Supply electrical power so that the position measuring system and the LED display can function.
 \rightarrow Position the process valve at the lower switching position.

[^2]: *) both solenoid valves are actuated simultaneously for the model for double-acting actuators (see Chapter "15. Design for Double-Acting Actuators" on page 76)

[^3]: \rightarrow Open the housing following the instructions in Chapter "8. Opening and Closing the Housing".

